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Chapter 1 Introduction

Welcome to Suncoast High School! We are very glad that you chose us and hope that

you enjoy your next four years here as an MSE student. The Math, Science, and Engineering

program is a mathematically rigorous program that offers classes in college-level mathematics,

the sciences, and physics. It prepares students to perform at the very best in college and beyond

and is proud to guide students to admission at the nation’s best universities, including every Ivy

League, MIT, Stanford, Vanderbilt, Johns Hopkins, UF, and more.

The goal of this text is to offer a pre-Suncoast curriculum to rising Freshman. This text

will review the important Algebra II skills and cover fundamental skills necessary for physics.

We hope that each student takes advantage of the textbook, even if some of the material is not

covered during the week-long session.

In writing this text, we were forced to leave out some steps in solving problems due to space

limitations and to maintain the conciseness of the book. We hope that students show all work

when solving problems to minimize the mistakes made during assessments. In later years of

mathematics, some steps may be left out to allow room for solving longer and more complex

problems; however, at this level, showing all steps is necessary.

1.1 Study Habits

Suncoast, at many points, can have very stressful moments throughout the four years. We

hope that instilling various study habits will allow you to perform as best as possible to ensure

adequate mental and physical health, emotional stability, and maintain self-confidence levels.

Below is an incomplete list of study habits and advice that you should follow during your time at

Suncoast:

Find a study group. One of the most important things to have at Suncoast is to have a

trusted friend group to which you can ask questions, work on homework together, and

study for tests. Remember, multiple minds are greater than one!

Online help sites don’t help. If you’re considering using Slader, Chegg, CourseHero, Yahoo

Answers, or other help sites to find the answers to your homework, you’re not helping

yourself. Students often exploit these websites to quickly complete their homework before

the due date rather than starting their homework earlier, understanding the material, and

working on the assignment without these sites. Indeed, it’s important to ask questions if

you don’t understand something; however, using these sites to do your entire homework

isn’t a good idea by any means.

Minimize Procrastination. As former Suncoast students, we understand procrastination!
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Please learn from our mistakes, don’t make a habit of putting things off until the last

minute. Given the far larger work load you will inevitably experience through your four

years here, it is highly recommended that you try to minimize procrastination. If you ever

have a large assignment due, never wait until the day before to start; you could end up

losing significant amounts of sleep, even pulling an all-nighter, harming your cognition

the next day.

Take advantage of tutoring. Suncoast has many, many tutoring opportunities around

campus during lunch and after school. Mu Alpha Theta offers one-on-one math and

physics tutoring from Monday through Thursday in various classrooms. At some point

near the start of the year, the school sends a list of teachers from every department that

offer tutoring after-school to ask questions and review material. Find these opportunities

and attend them at the first realization of difficulty; don’t wait until your grade suffers

before you ask for help.

Stay Organized. There is no generalized solution for this but find a system that works for

you. Personally, we have found it best to keep your classes in separate notebooks/folder-

s/binders. Teachers will all ask for binders, but sometimes this isn’t totally necessary; if

they require a binder (meaning they’re doing binder checks), then get the binder. If they

say binders are optional, ask them about the number of handouts - the less handouts means

the lesser need for a binder.

1.2 How to Read This Text

It is your choice how to read this text; it was intended to be read from cover to cover in order.

If you find that you want to explore one topic, feel free. Unless a chapter title is explicitly related

to a previous, it shouldn’t require previous material and knowledge. If you don’t understand

something, backtrack until you find the information you don’t understand.

Remark: It is not recommended to read the second half until you’ve completed the first half.

The second half is entirely based on the first, so it is inevitable that you will find parts that you

don’t understand.

1.2.1 Organization

You can think of this book as being divided into three different sections:

1. Chapters 2 through 9. These chapters form the core of the Jumpstart material. They are

the basis of the Algebra II knowledge required for your time at Suncoast. It covers most

the material that Algebra II typically covers and then physics skills to ensure that students

are comfortable in both courses.

2. Chapters 10 through 13. This material is material that may have been covered in some

Algebra II courses. This is not an essential part of the Jumpstart curriculum, as it is
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re-taught in Pre-Calculus. For those that want to get a head-start on this material, feel free

to look it over.

3. Chapters 14 through 15. These chapters contain advanced concepts that are there to allow

students to demonstrate mastery of the second part and to perform at the top of their class.

These sections also provide a framework for preparation in competitive mathematics, such

as the AMC, Mu Alpha Theta, etc.

1.2.2 A Note on Problem Solving

We believe that the best way to learn mathematics is to solve problems. Our goal is to

have you solve lots of problems in this book, as you will solve many more during your time as a

mathematics learner. We find that the best way to solve problems is to attempt to solve a problem

that you don’t know how to do by walking through a framework (an outline, per se) of how to

do the problem. That way, you are discovering the solution on your own, and you are bound to

remember it better.

This text will also go through much of the required derivations that are essential for success.

We believe that, by deriving all formulas, you will better understand where the math comes from

and will have an easier time applying the math. Physics is an applied math; thus, to perform well

in physics, it is important that we cover the information in Algebra and Pre-Calculus so it can be

applied.

One of our most important recommendations is to not memorize every formula; it is much

more valuable to understand where formulas come from. We will point out formulas or ideas

that are worth memorizing. Other ideas should be reconsidered for each problem.

1.3 Notation in this Text

We firmly believe that consistent notation will lead to less mistakes in problem-solving;

thus, we have created a consistent set of notations that will be used throughout the text. There

are some notations that some students don’t like that are used in this text. It is important that

students adjust to equations that aren’t "neat". Below is an incomplete version of this list:

1. All functions will be written with the independent variables in parentheses. For example,

y(x), f(y), u(x, y) are acceptable notations. y, f , and u are not.

2. For the logarithmic function section, the natural logarithm is denoted as log(x). The

common logarithm is denoted as log10(x).

3. Given a list of exponential functions of the same base, they arewritten in order of increasing

power. For example, f(x) = e−2x + e3x − e7x is an acceptable notation. If there is more

than one base, write the bases in ascending order as well.

4. Solutions are written in ascending order. For example, given two solutions x1 and x2,

x1 < x2.
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5. Ensure that parentheses are large enough to encompass the biggest function. This is easiest

done by leaving an open space for the parentheses, writing the argument, then drawing the

parentheses. Otherwise, it can be tough to tell what’s inside the parentheses.

6. For trigonometry, inverse functions are written with a negative exponent: sin−1(x),

cos−1(x), etc. are used rather than arcsin(x) and arccos(x).

7. Operators are written with parentheses. sinx is not acceptable, while cos(x) is.

8. ":=" means "equal to by definition".

1.4 Acknowledgements

We would like to thank the MSE Department, especially Mr. Aaron Keevey, Mr. Randal

Oddi,Mrs.Beth Pearson,Mrs.MonicaRussell, andMrs.ValerieNewcomer formaking Jumpstart

a reality. This program has helped hundreds of students perform well at Suncoast and beyond,

making this opportunity like no other. Thank you to all volunteer helpers that spend their

summertime helping the incoming Freshman class to prepare for their Freshman year. Lastly,

we’d like to thank the Media Center Specialists, Mrs.Amy Armbruster and Ms. Catherine Davis,

for generously allowing the use of the media center to host Jumpstart.

We would also like to cite and thank various sources from which we found problems for

all chapters of this textbook. These sources include Kuta Software, the American Mathematics

Competition (AMC), the American International Mathematics Examination (AIME), various

country mathematics competitions (such as Sweden, Morocco, etc.), and the Art of Problem

Solving’s Alcumus page.

1.5 Text Updates

A list of text updates will be listed here. Currently, as Version 1.0, there are no updates.

Any modifications to the novel will be listed in here.

1.6 Contact Information

It is important that you reach out to someone at the first realization of difficulty. If you have

specific class-related questions, contact your teacher. Their syllabus will have the best way to

contact them (usually, it’s email).

If you believe there to be an error in this text, you may reach out to one of the writers with

the error. Reach out to either Mr. Cole Ellis here or Mr. Joshua Kuffour here.

mailto:educationelite1@gmail.com
mailto:jkuffour1.jk@gmail.com
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1.7 How We Wrote this Book

This book was written using the LATEX document processing system. We would like to thank

the various LATEX packages we’ve used along the way in making this document as well as the

numerous help sites in helping us define our own document class. The diagrams were prepared

using the Tikz package.

1.8 About Us

We are a group of passionate mathematics enthusiasts that find high value in sharing our

knowledge with the world. Cole Ellis was the lead author of this text and primary editor of the

solutions. Joshua Kuffour, Jonathan Hartman, and Matthew Schrank prepared a draft of sections

of the text and thorough notes on other portions. They also selected and organized many of the

problems in text and wrote a draft of many of the solutions. We sincerely hope that this text will

aide you in this tough transition between middle school and high school!

1.9 Final Remarks

We hope that you find this text to be a good resource for you during your time before

Suncoast and your time at Suncoast. We hope that you take advantage of all parts of this book,

from beginning to end, to ensure your success at Suncoast and beyond. Good habits start early;

make time each day to review the material and attempt the practice problems provided.

We had a great time writing this. Not only does it give us alumni the opportunity to leave

a legacy at Suncoast, it gives us a chance to give back to the academic community. We believe

that this community is what pushed us to reach out aspirations, and we hope that this book can

be the first stepping stone for you. Good luck to everyone and we wish the very best for all of

you!
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Functions are the basis of Algebra. They take in some number of independent variables

and output a dependent variable. For the sake of this course, we will be mostly dealing with

uni-variate functions; that is, functions with one input and one output. Suppose you have a

calculator that can only do one programmed set of operations. For any number you put in, it

triples it and adds one. For example, inputting 3 outputs 10, inputting 5 outputs 16, etc. We can

define a function f(x) = 3x+ 1 to represent the situation. f is the name of the function. "(x)"

means that the function is in terms of the independent dummy variable, x.

There’s not that much else to functions; they are super simple. We define the function, input

the value needed, and record the output. Most functions are either written as f(x) or y(x). If

more than one function is being discussed at any one time, it is common to continue down the

alphabet with g(x), h(x), etc.

In this chapter, we will go over the types of sets that exist in Algebra, then discuss the

types of common functions, go over domain and range, discuss the inverse of a function and its

application, and finally the meaning of a function transformation.

2.1 Basic Set Theory

Set Theory is, like it sounds, the application of mathematical logic to sets. A set is a collection

of numbers, objects, or other sets. In mathematics, it’s most valuable to limit our sets to only

contain numbers, but it can contain anything. For example, the set of U.S. states starting with

the letter "A" is

{Alabama, Alaska, Arizona, Arkansas}.

Here is an example of a numerical set:

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.
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2.1.1 Definitions

This section will cover the definitions needed for this chapter. There are a lot. Please read

through them because they will be referred to throughout the book.

Here is a list of the most common sets in mathematics. These will be referred to often

throughout the book, so it is important that you know the definition of the set and its notation.

The real set is the set of all real numbers. A real number is any number that doesn’t have an

imaginary component. Complex numbers will be detailed in Chapter 3. The real set is denoted

as R. An example of a set of real numbers (not the real set!) is
{

1,
√

2,
11

3
,−12, π

}
.

The integer set is the set of all integers. An integer is any number that doesn’t have a

fractional component. These can be positive,negative, or zero. The integer set is denoted as Z.

An example set of integers is {−2, 4,−78, 12}.
The rational set is the set of all rational numbers. A rational number is any number that

can be represented as a fraction with an integer numerator and denominator. Because of this

restriction, e, π, and the square root of any non-perfect square (such as 2, 3, 5, 6, 7, . . .) is an

irrational number because they cannot be expressed as a ratio of two integers. The rational set

is denoted as Q. An example set of rational numbers is
{
−1, 4.7,

11

2
,
√

36

}
.

The natural set is the set of all natural numbers. A natural number is a counting number

- it’s any positive integer. Remember that zero does not count as positive! The notation for the

natural set is N. An example set of natural numbers is {2, 5, 13, 69}.
The complex set is the set of all complex numbers. A complex number is any number that

can be written as a + bi, for real numbers a and b, and i as the imaginary constant. We won’t

worry about complex numbers until Chapter 3, but it’s good to put them in the list. The notation

for the complex set is C.

Here are some more definitions that will be used throughout the book. These refer to the

properties of a set:

An element is a value of a set. Whether this be a number, idea, object, or another set, it’s

one of the components of the set. For example, 2 is an element of the set {1, 2, 3, 4, 5}. We

have a notation to describe this: "∈". So, we could say 2 ∈ {1, 2, 3, 4, 5} (read as "2 is in the set

{1, 2, 3, 4, 5}).
A subset describes a set that whose elements are all in another set. In order words, we say

that set A is a subset of set B if every element of set A is an element of set B. We use the notation

⊆ for subsets. For example, we can say that N ⊆ Z since every member of the natural set is in

the integer set. A proper subset is a subset such that A6=B. This means that every element of A
is in B but B has elements that aren’t in A. As a result, N0 ⊆W - since the natural numbers plus

zero becomes the whole number set - while N ⊂ R.

The null set, sometimes referred to as the empty set, is a set that contains no elements. The

notation for the empty set are ∅ or {}.
Remark: Technically, the null set is a subset of every set.
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The final two definitions are the main operations that we can do to sets: union and intersec-

tion.

The union of two sets refers to the combination of every element in both sets. It is

represented by the symbol ∪ or the verbiage "or". For example, if A= {1, 4, 7, 10, 13} and
B= {2, 3, 5, 6, 8, 9, 11, 12}, then A ∪ B = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}.
Remark: If sets A and B have an element in common, it is only written once.

The intersection of two sets refers to the elements in common between two sets. It is

represented by the symbol∩ or the verbiage "and". For example, if A= {4, 8, 12, 16, 20, 24, 28|}
and B= {5, 10, 15, 20, 25, 30}, then A∩B= {20}. Let’s look at an example to summarize this

information:

Example 2.1: Given the following sets, find A∪B and A∩B. Then determine if A is a subset of

B (or vice versa) and prove whether A is a subset of the natural numbers.

A := The set of all multiples of 3 up to 30 (inclusive)

B := The set of all even numbers up to 30 (inclusive)

Solution: Here is the lists described in the problem:

A = {3, 6, 9, 12, 15, 18, 21, 24, 27, 30}

B = {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30}

The first two parts are very easy and require little explanation:

A ∪ B = {2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30}

A ∩ B = {6, 12, 18, 24, 30}

The second two parts require more of an explanation. Noting that A has elements that aren’t in

B (such as 2), and B has elements that aren’t in A (such as 3), neither sets are a subset of the

other. Since every element of A is a natural number, and A is not the natural set, we can say that

A⊂ N.�

Those are all the definitions needed, so let’s talk about interval notation.

2.1.2 Interval Notation

Interval notation is one of the most used answer formats in Algebra. Teachers will often require

it as it’s easy to read and very descriptive. Interval notation describes a range of data; it gives

every interval where the data follows a certain condition (whether it be a given inequality or the

solution to an equation, etc.) In interval notation, there are two important symbols that we use:

( ) := the number is not included in the set

[ ] := the number is included in the set

Let’s take a look at a number of examples to get a better understanding of the notation.

Example 2.2: Write x > 7 in interval notation.
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Solution: To write in interval notation, we need the bounds of the inequality. Clearly, the lower

bound is 7. But what is the upper bound? Well, it’s +∞!. We also need to note whether we need

to include the bounds. We don’t include 7 because it’s a >, not ≥. Since +∞ is technically not

reachable, we never include that. So, our interval notation, is (7,∞).�

That last part is very important to remember. Let’s put it in a note.
�

Important: If a bound is±∞, since it’s impossible to reach, we always put an open parenthesis.

Example 2.3: Write 7 < x ≤ 12 in interval notation.

Solution: Our bounds are 7 and 12. Since 7 is not included, and 12 is, we say that the interval

notation is (7, 12].�

Now, let’s look at an example involving more than one interval.

Example 2.4: Write x ≤ 6 or 7 < x ≤ 12 in interval notation.

Solution: We consider the intervals separately. The first interval is (−∞, 6] and the second is

(7, 12]. All we need to do is put them together, since "or" was used, using the union notation, so

our interval is (−∞, 6] ∪ (7, 12]. �

Example 2.5: Write x ≤ 12 and x = 11 in interval notation.

Solution: The intersection between these two intervals is x = 11, so the interval is just [11].�

Example 2.6: Write x ≥ 12 and x = 11 in interval notation.

Solution: There is no intersection point, so we can write the answer as ∅.�

With these two pieces out of the way, let’s move on to discuss the most important topic in this

chapter: functions.

2.2 Introduction to Functions

A function takes in a value or an input and spits out a value or an output. The reason sets are

important is that the input for continuous functions consists of a set of numbers, while the output

is also a set of numbers that correspond to the input.

You’ll often see a table as shown in the examples below. The x section represents the input

or the x-value that is being plugged in. f represents the actual function functioning on x and

f(x) represents the output value.

Example 2.7: Write a table to show the values of f(x) = x+ 1 at x = 0, 1, 2.

Solution: In this case, this function says for every input, add 1 to find the output.

x f(x) = x+ 1 f(x)

0 (0) + 1 f(0) = 1

1 (1) + 1 f(1) = 2

2 (2) + 1 f(2) = 3

�

Example 2.8: Write a table to show the values of f(x) = x2 + 1 at x = 0, 1, 2.

Solution:
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x f(x) = x2 + 1 f(x)

0 (0)2 + 1 f(0) = 0

1 (1)2 + 1 f(1) = 2

2 (2)2 + 1 f(2) = 5

�

The definition of a function given above is an over-simplified definition of a function. Let’s take

a look at the formal definition of a function.

A function is any function that has only one output for every input. In other words, this

function passes the vertical-line test. If you look at the examples above, every input has one

output.

Here’s an example of something that doesn’t have one input.

Example 2.9: Write a table to show the values of f(x) = ±
√
x at x = 0, 1, 2.

Solution:

x f(x) = ±
√
x f(x)

0 ±
√

(0) f(0) = 0

1 ±
√

(1) f(1) = −2 and f(1) = 1

2 ±
√

(2) f(2) = −
√

2 and f(2) =
√

2

�

x

y(x)

If we graphed the above function, it would look like the graph

to the right.

As we can see, if we were to plug in any number (except x = 0),

it would yield two outputs. Thus, this isn’t a function as it doesn’t

pass the test.

To see the vertical line test in action, simply draw a vertical

line through a given function. If it passes through more than one

point, it isn’t a function. On the graph to the right, the dashed line

represents an example of a vertical line that proves it to not be a function. Only one example is

necessary to prove this (though there are infinite cases in this example).

Before we continue, we need to establish two more terms: domain and range. The input

column is formally known as the domain and the output columns is the range. These are described

with the same interval notation as seen in the previous section.
�

Important: The domain consists of all inputs, or x-values, that can be plugged into the function.

The range consists of all outputs, or y-values, that can be received from the function.

Note the use of the word "can". This means that there are circumstances in which you

cannot plug in x, meaning there is no corresponding y.

Here are some examples to further understand domain and range.

Example 2.10: Determine the domain and range of the function f(x) = x2.
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Solution: The domain asks what can be plugged into the function. Is there anything that can’t?

Nope! So the domain can be written as x ∈ R or x ∈ (−∞,∞).

Now, what can we receive from the function? We can plug in some numbers and look for a

generalization. 0→ 0, 1→ 1, −1→ 1, . . .. We see that the outputs can never be negative (try

and prove it for yourself!). This means that the range is y ∈ [0,∞).�

Example 2.11: Determine the domain and range of the function f(x) =
√
x.

Solution: Since we can’t take the square root of a negative number, the domain must be

x ∈ [0,∞].

Experimenting with some values, we see that the return value can never be negative. Thus,

the range is y ∈ [0,∞).�

Example 2.12: Determine the domain range of the function f(x) =
1

x
.

Solution: Because we can’t divide by zero, the domain is x ∈ (−∞, 0) ∪ (0,∞).

Since the function never reaches zero (plug in small values around zero like 0.1, 0.001,

−0.01, etc.), the range is y ∈ (−∞, 0) ∪ (0,∞).�

Now that we’ve discussed the vertical line test, you must be wondering: is there a horizontal

line test? To answer that question, why yes there is! So, what is the purpose of the horizontal line

test? The horizontal line test tests if a function is one-to-one. In other words, for every output,

there is only one corresponding input.

Definition 2.1. One-to-One Functions

♣

A one-to-one function is a function where it and its inverse are functions. This means

that there is one input for every output and one output for every input (hence the name

one-to-one).

x

y(x)

We will discuss inverse functions in the next section.

Lets look at two examples of the horizontal line test.

Example 2.13: Conduct the horizontal line test on f(x) = x2 and

analyze the results.

Solution: Weare looking for at least one examplewhere a horizontal

line touches more than one point. We see that there are an infinite

points (y = 2 is shown to the right), so this is not a one-to-one

function. There are two inputs for the same output. �

Example 2.14: Conduct the horizontal line test on f(x) = x and analyze the results.

Remark: Note that if an equation passes the horizontal line test, that doesn’t always mean

that it’s one-to-one. It must pass BOTH the horizontal and vertical line tests to be considered a

function.

Solution: We look for a horizontal line that touches more than one point and cannot find one.

This means that that f(x) is a one-to-one function. An example line at y = 2 is plotted; every

example line would look the exact same. (The graph is shown on the next page.)�
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x

y(x)Why is this important? We are going to look at the importance

in the next section when we discuss inverse functions.

2.3 Inverse Functions

Inverse functions were informally (and superficially) covered in Al-

gebra I via a basic process. Our goal in this section is to define an

inverse function, how to find an inverse function, and understand the

visual depiction of an inverse function and its relation to the starting

function.

An inverse function is formally defined as

f−1 (f(x)) = f
(
f−1(x)

)
= x.

What this means is that the functions f and f−1 (the inverse of f(x)) are inverses if they satisfy

the statement above. But how do we find that? Also, what does this mean graphically?

Let’s discuss the first question. Here is a guide to finding the inverse of a given function

f(x):

1. Replace f(x) with y.

2. Switch every x with y and vice-versa.

3. Solve this equation for y in terms of x.

4. Replace this y with f−1(x).

Let’s look at a few examples to better understand the process.

Example 2.15: Find f−1(x) if f(x) = 2x− 3.

Solution: We are going to follow the steps rigorously.

Step 1 y = 2x− 3

Step 2 x = 2y − 3

Step 3
x+ 3

2
= y

Step 4 f−1(x) =
x+ 3

2

We can check this: 2

(
x+ 3

2

)
− 3 = x+ 3− 3 = x. This means we have it right. �

Example 2.16: If f(x) = x2, find f−1(x).

Solution: Switching x and y we get x = y2, which means that f−1(x) = ±
√
x. �

�

Important: It is really important that you do not forget the "±"! When we do square roots,

always write it and then determine if it’s necessary. That holds true for the rest of your career in

mathematics.

This example brings up an important point. We proved in the previous section that the

inverse function isn’t a function! How is this possible? How can the inverse of a function not be

a function? To explain this, we must define the graphical definition of an inverse function.

Using example 2.15, lets make a table of inputs and outputs for the function and its inverse.
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f(x) = 2x− 3 f−1(x) =
x+ 3

2
Input Output Input Output
−1 −5 −1 1
0 −3 0 3/2
1 −1 1 2
2 1 2 5/2
3 3 3 3
4 5 4 7/2

x

y(x)
f(x)
f−1(x)

If you look closely at the inputs and outputs of the original function

and its inverse, you might notice something. The inputs and out-

puts are switched! This means that whenever you take the inverse,

you are quite literally flipping the x-values and y-values in a table.

Graphically, here’s what this looks like.

We see that the graphs intersect. This is okay! Sometimes

they do, other times they don’t. Below we put two more examples

of functions and their inverse. The first graph is of the exponential and logarithmic functions.

x

y(x)

f(x)

f−1(x)

x

y(x)
f(x)

f−1(x)

These will be reviewed in Chapter 9. The second graph is of the cubic and cube root functions.

These will be covered in Section 6.2 and Section 8.4.

These graphs seem to display some sort of symmetry. It seems that they are all reflected

about a line. Which line? It’s y(x) = x. So, if you reflect a function about the line y(x) = x,

you obtain a function’s inverse. But why?

Remember that we switched the x-values and y-values when calculating the inverse. This

means that x = y, which means that it must relate to the line y(x) = x.

Now let’s address the question of why we do this. In the formal definition of the inverse,

if you plug the inverse into the original function or vice versa, we obtain x. Looking at the

equation f
(
f−1(x)

)
= x and take the inverse of both sides, we obtain f−1(x) = f−1(x). This

means that the formal definition of an inverse confirms the fact that these functions are equal.

The function reflects itself if the statement holds true, and as a result, when you reflect about the

line y(x) = x, you obtain the inverse.

Another reason is the concept of reflection. Whenever you reflect something about a point
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or line the overall distance from that point or line remains constant. Thus, in order to obtain

the point that is equidistant to the line y(x) = x, or an equation that is equidistant to the line

y(x) = x, you have found that original equation’s inverse.

The final reason involves the graphs. It’s as if you combined the equations or plugged them

into one another, their curves and anything deviating from the line would cancel and only leave

the line of reflection y(x) = x, which is exactly what happens in the formal definition. Only the

inverse function can accomplish this.

Why was the horizontal line test important in determining the existence of an inverse? It

seems like we left this out.

Well, if you look at the second example for finding an inverse you’ll see why. The function

f(x) = x2 isn’t one-to-one and doesn’t pass the horizontal line test. This means there is more

than one input for one output. Well, when you take the inverse, it switches the inputs and outputs.

So that means there is more than one output for one input in the inverse function. But wait! We

can’t have more than one output for one input, because that means it isn’t a function! And this is

why the horizontal-line test is important. It confirms the existence of not only an inverse, but an

inverse function.

Another way to think about is the concept of reflecting across the line y(x) = x. The

horizontal line test for a function is the vertical line test for an inverse function and vice-versa.

One last question: What about the domain and range of an inverse function? Well, if the

input and outputs switch from original to inverse, that means the domain and range’s switch as

well!

Example 2.17: Find the domain and range of f(x) =
√
x and its inverse.

Solution: In the previous section we found the domain and range of f(x) to be x ∈ [0,∞) and

y ∈ [0,∞). If we find the inverse of f(x), we get y =
√
x =⇒ x =

√
y =⇒ f−1(x) = x2.

The domain and range of this is x ∈ [0,∞) and y ∈ [0,∞). �

Now this example brings up an interesting point about obtaining inverse functions. In an

earlier example in this section, we said the inverse of f(x) = x2 isn’t a function because x2

didn’t pass the horizontal line-test. So why does f(x) =
√
x have an inverse that is equal to x2

but, x2 doesn’t have an inverse? The trick here comes down to the domain. If we notice, the

domain of
√
x range only extends from 0 to infinity. Thus, the domain of the resulting inverse

extends from 0 to infinity as well. Thus, in order to make the inverse of x2 a legitimate function,

we have to restrict its domain.
�

Important: If you restrict a function’s domain such that it is one-to-one on that domain, it has

an inverse function on that domain.

With this, we conclude our introduction to inverse functions. Throughout the book, we will

learn about even more functions, some which may be invertible, and some which have even more

going on than what is in this section. Now, let’ talk about function transformations.
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2.4 Transformations, End Behavior, and Graphing

In this section, wewill go into all the possible things that can affect the end-behavior of a function.

Like the set-notation section, this section may be very definition heavy.

The y-intercept is where the function crosses the y-axis. To obtain it, let x = 0 and solve

for y. The x-intercept is where the function crosses the x-axis. To obtain it, let y = 0 and solve

for x.

Let’s look at an example of this.

Example 2.18: Find the x- and y-intercepts of f(x) = x2.

Solution: Letting x = 0, we get the y-intercept as f(0) = (0)2 = 0. Letting y = 0, we get the

x-intercepts as 0 = x2 =⇒ x = 0. So our x-intercept is (0, 0) and the y-intercept is (0, 0). �

We won’t do another example because it’s pretty simple to find these things. x-intercepts

can be tricky, but those will be dealt with on a case-by-case basis in the coming chapters.

Lets take a look at how to transform graphs in the coordinate plane.

2.4.1 Transformations

A transformation characterizes a change from a parent function. The parent function is the most

basic form of a function. Here are some examples of parent functions:

x

y(x)
f(x) = x2

x

y(x)
f(x) = x3

x

y(x)

f(x) =
√
x

x

y(x)

f(x) = 3
√
x

Lets find ways to change the position of the graph within the plane. There are six ways to

do this. A vertical shift moves the entire graph up or down k units (k ∈ R). It is represented as

f(x) 7→ f(x)± k. Here are some examples of vertical shift.
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x

y(x)
f(x) = x2 + 2

x

y(x)
f(x) = x2 − 2

This makes sense because when a number is added or subtracted from f(x), you are quite

literally adding or subtracting from every y-value present.

A horizontal shift moves the entire graph left or right k units (k ∈ R). It is represented as

f(x) 7→ f(x∓ k). Here are a few examples of this: There are two ways to think about this. The

x

y(x)

f(x) = (x− 4)2

x

y(x)

f(x) = (x+ 4)2

first way is that the shift corresponds to the opposite of what’s inside the function. So, if there is

a minus inside, you shift right. If there is a plus inside, you shift left.

The other way to think about it is logically. In the example above, if you plug zero into the

parent function, you get zero. But to get zero in g(x), one must plug in the four, which means the

vertex has shifted 4 units. And to get zero in h(x), one must plug in negative four, which means

the vertex has shifted left 4 units. If you keep track of the vertex, you can determine the shifts.
�

Important: If you know where the vertex is, you can determine how the function shifts.

A vertical stretch/compression stretches or compresses every y-value by a factor of k. This

is written as f(x) 7→ kf(x). In this case, we are going to assign k ∈ R+ and will discuss the

meaning of k < 0 later.

x

y(x)

f(x) = 2x2

x

y(x)

f(x) =
1

10
x2
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Notice how if k > 1, the graph becomes narrower because it increases faster. Also notice

how if 0 < k < 1, the graph becomes wider.

A horizontal stretch/compression stretches or compresses every x value by a factor of k.

This is written as f(x) 7→ f(kx). Again, we are going to assign k ∈ R+ and will discuss k < 0

later.

x

y(x)

f(x) =

√
x

2
x

y(x)

f(x) = 2
√
x

�

Important: For the function f(x), the transformation f(kx) transforms every x-value by
1

k
.

A vertical reflection follows the same method of vertical compression, but this time we will

look at if k < 0. If k < 0, that means that all the y-values become negative, meaning that it is

reflected over the x-axis.

x

y(x)

f(x) = −x2

x

y(x)

f(x) = −2x2

A horizontal reflection follows the same method of horizontal compression, but this time

we will discuss k < 0. All the x-values become negative, meaning that it reflects over the y-axis.

x

y(x)

f(x) =

√
−x

2

x

y(x)

f(x) = 2
√
−x

So, as a final note to remember compression, stretch, and reflections, we write these bullets:
�

Important: Given a transformation by a factor of k,

1. If |k| < 1, the graph becomes wider.

2. If |k| > 1, the graph becomes narrower.

3. If k < 0, the graph reflects about the y-axis.
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Notice that this is very similar to the vertical compression/stretch. And that is because, they

are quite literally the same thing. It depends on how one interprets it.

For example, if y(x) = 2x, one can interpret this as every y-value being multiplied by 2,

thus experiencing a vertical stretch. Or one can interpret this as every x-value being divided by

2, thus experiencing a horizontal compression. These are both valid interpretations. The rule of

thumb here is to go with one and stick by it. Now here’s a table to recap all the transformations:

Transformation Effect

f(x)± k Shifts f(x) up/down k units

f(x± k) Shifts f(x) left/right k units

kf(x) Scales y-value by a factor of k

−f(x) Reflects f(x) about x-axis

f(kx) Scales x-values by a factor of k

f(−x) Reflects f(x) about y-axis

Note that shifting a function affects its domain. Just consider the shifts from the parent function

and then adjust the domain. Let’s try a few of these to understand how it works.

Example 2.19: Find the domain and range of f(x) =
√
−x and its parent function f0(x).

Solution: The domain of the parent function, f0(x) =
√
x, is x ∈ [0,∞). Since we reflected

f(x) about the y-axis, the x’s become negative. So, the new domain is x ∈ (−∞, 0].

The range of the parent function is y ∈ [0,∞). There was no changes to the value of y, so

the range is y ∈ [0,∞).�

Example 2.20: Find the domain and range of g(x) = x2 + 4 and its parent function g0(x).

Solution: The domain of the parent function, g0(x) = x2, is x ∈ R. Since there is no change to

the x-values, the new domain is x ∈ R.

The range of the parent function is y ∈ [0,∞). Since the +4 adds 4 to each y-value, the

new domain is y ∈ [4,∞).�

Example 2.21: Find the domain and range of h(x) =
1

x− 2
+ 5 and its parent function h0(x).

Solution: The domain of the parent function, h0(x) =
1

x
, is x ∈ (−∞, 0) ∪ (0,∞). The −2

shifts the function to the right 2 units, so the new domain is x ∈ (−∞, 2) ∪ (2,∞).

The range of the parent function is y ∈ (−∞, 0) ∪ (0,∞). Since the function moves up 5

units, the new range is y ∈ (−∞, 5) ∪ (5,∞).�

x

y(x)

f(x)

Let’s try two examples of graphing shifted functions.

Example 2.22: Suppose f(x) = 3
√
x− 2 + 5. Identify the parent

function, describe the transformations, and graph the transformed

function against the parent function.

Solution: The parent function is f0(x) = 3
√
x. The +5 outside

of the function indicates the function shifts up by 5 units. The −2

inside the function shifts to the right by 2 units. To the right is the

graph of the parent function and the shifted function. �
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We are going to try a final example that incorporates every type

of shifting. If you haven’t tried any of the examples first without looking at the solutions, this is

the one to try to ensure that you’ve obtained mastery of the material.

Example 2.23: Let f(x) = −4 3
√
−3x− 1 + 7. Identify the parent function, describe the

transformations, and graph the transformed function against the parent function.

Solution: Method 1: Consider each shift.

The parent function is f0(x) = 3
√
x. The +7 outside out of the function indicates the function

shifts up by 7 units. The −4 outside the function indicates every y-value is scaled by 4 and is

reflected about the x-axis. To find the horizontal scale factor and shift we will factor the inside

such that we have k(x− x0):

f(x) = −4 3
√
−3x+ 1 + 7

= 3

√
−3

(
x− 1

3

)
+ 7

Therefore, this tells us that our function is shifted to the right by
1

3
of a unit. It also tells us that

the graph is horizontally compressed by a factor of
1

3
and is reflected about the y-axis. These

are all the shifts; using the shape of the parent function, we can now graph f(x).

x

y(x)

f(x)

Method 2: Watch the vertex.

The vertex of the parent function is at (0, 0). Following the same

algebraic method shown in the first method, we get the new vertex to

be
(

1

3
, 7

)
. Now, we only consider the compression and stretching

shifts. This was shown in the first method.

The graph is shown to the right.�

This example above brings up an interesting concept. This

function had both a reflection across the x-axis and across the y-

axis, but it looks exactly the same as if nothing happened. What is

going on? Let’s discuss even and odd functions to understand this.

2.4.2 Even and Odd Functions

An even function is a function that satisfies the condition

f(−x) = f(x).

Graphically, an even function is symmetric about the y-axis. The most common two even

functions are f(x) = x2 and f(x) = sin(x). The trig functions, such as sin(x), will reappear in

Chapter 12. To check to see if a function is even, plug in −x and see if the resultant function is

the same as the original. A trait of even functions is that they look the same if they are reflected

across the y-axis.
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An odd function is a function that satisfies the condition

f(−x) = −f(x).

Graphically, an even function is symmetric about the origin (also known as 180-degree symme-

try). The most common two odd functions are f(x) = x3 and f(x) = cos(x). To check to see

if a function is even, plug in −x and see if the resultant function is the original times a factor of

−1 (the opposite of the original). A trait of odd functions is that they look the same if they are

reflected across both the x-axis and y-axis.

We didn’t forget about the last example of the previous section. You can prove that f(x) =

−4 3
√

3x− 1 + 7 is an odd function, and thus after reflecting across both axes, it looks the same.

With this, we conclude our discussion of graphing with transformations. Now, let’s discuss

the final important idea of graphing: end behavior.

2.4.3 End Behavior

End Behavior describes the activity of a function as it goes to infinity and negative infinity. The

end behavior changes based on the degree of the polynomial - whether it is an even-degree or an

odd-degree determines the end behavior.

Remark: The degree of a function is determined by the highest degree of the polynomial.

x

y(x)
f(x)

g(x)

An even-degree function will have an end behavior that points

to the same place. It has a "U" or "W" shape. For example, consider

the function f(x) = x2 + x+ 1. As you can see, as x decreases, or

goes to the left, the function goes up or increases, and approaches

infinity. As the function as x increases, or goes to the right, the

function goes up, increases, the function also approaches infinity.

If the leading coefficient in front of the highest even degree is

negative, the function flips. So as x decreases or goes to the left, the

function goes down or decreases and approaches negative infinity.

And as x increases or goes to the right, the function goes down or

decreases and also approaches negative infinity.

To the right are the graphs of f(x) = x2 + x + 1 and g(x) = −x2 + x + 1. We see that

f(x) tends to +∞ as x→ −∞ and as x→∞. We see that g(x) tends to −∞ as x→ −∞ and

as x→∞.

An odd-degree function will have an end behavior that points in different directions. It

experiences a "Z" or "S" shape. We will consider the function f(x) = x3 + x+ 1. As you can

see, as x increases, the function increases and approaches infinity. However, as x decreases, the

function goes decreases, the function approaches negative infinity.

As you can probably tell, if the coefficient in front of the highest degree in the polynomial is

negative, the conditions flip. As you can see, as you go the left, the function goes up to positive
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infinity. And if the function goes right, the function goes down to negative infinity.

x

y(x)
f(x)

g(x)

To the right are the graphs of f(x) = x3 + x + 1 and g(x) =

−x3 + x + 1. We see that f(x) tends to −∞ as x → −∞ and

f(x) tends to +∞ as x → ∞. We see that g(x) tends to −∞ as

x→ −∞ and tends to −∞ as x→∞.

With this, we conclude the section on function transformations

and "shifting". This section was extremely long and covered a lot of

information; however, the skills presented are extremely important

for the rest of this text and the rest of your time studying math. Be

sure that you understood all of the content presented and you can

apply it in various situations.

Now, we will discuss the final section of the chapter: the basics of piece-wise functions and

function combinations.

2.5 Piece-wise Functions and Function Combinations

A piece-wise function is a function that includes multiple sub-functions over various intervals.

Piece-wise functions follow the form

f(x) =


f1(x) x0 ≤ x < x1

f2(x) x1 ≤ x < x2
...

...

.

Graphing a piece-wise function is super straight-forward. All you need to do is graph each

function in its respective domain! Let’s take a look at an example.

Example 2.24: Graph the piece-wise function f(x) =


x2 x ≤ 0

x+ 1 0 < x ≤ 5

3
√
x x > 5

.

x

y(x)

Solution: There isn’t much explanation for this here. The graph is

shown to the right. �

Let’s evaluate the function at a few points. We need to make

sure that we evaluate the point in the interval in which it’s defined.

Below are some points evaluated:

f(−2) = (−2)2 = 4

f(0) = (0)2 = 0

f(3) = (3) + 1 = 4

f(5) = (5) + 1 = 6

f(27) = 3
√

(27) = 3
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Also, something that isn’t shown here that is very important are

holes and filled in circles. Whenever an interval has a greater than or less than sign, at that point

there is a hole. Whenever an interval has an equal sign associated with it, we have a closed dot.

Thus, the graph should look more like this.

x

y(x)

Let’s look at the domain and range of the piece-wise. We can

write the domain and range the same way we always have; we don’t

have to look at the individual pieces to do this. The domain is x ∈ R

and the range is y ∈ [0,∞).

With this, we conclude our exposition to piece-wise functions.

Piece-wise functions will be discussed further in Section 10.5. Now

to talk about the final topic of the chapter: function combinations.

This part should mostly be a review from Algebra I and II.

There are five types of function combinations: addition, subtraction,

multiplication, division, and composition.

Function addition is very simple - all we need to do is add the components. Given f(x) and

g(x), adding the functions has the notation h(x) = (f + g)(x) or h(x) = f(x) + g(x). This

text will primarily use the first notation.

Function subtraction works the same way as function addition. The notations used are

h(x) = (f − g)(x) and h(x) = f(x)− g(x).

Function multiplication works a bit less intuitively but is still somewhat simple to complete.

The important thing to remember in function multiplication is the distributive property, as it is

used repeatedly. The notations are h(x) = (f · g)(x) and f(x) · g(x).

Function division is pretty simple as well; however, we need to ensure that we cancel

common factors. The notations are h(x) =

(
f

g

)
(x) or h(x) =

f(x)

g(x)
.

Function composition is substituting a function inside of another function. The notation for

this is h(x) = (f ◦ g)(x) or h(x) = f (g(x)).

Depending on the types of functions, these combinations can affect the domain and range

of the resultant function. Let’s look at an example.

Example 2.25: Suppose f(x) = x2 and g(x) =
√
x. Find all the function combinations and

determine the domain and range of each.

Solution: We find (f + g)(x) first. We get (f + g)(x) = x2 +
√
x and there is no simplifying

to do. The domain is affected only by the
√
x term, so the domain of (f + g)(x) is based on

√
x.

The domain is x ∈ [0,∞). Since both functions have the same range, adding them keeps that

range. The range is y ∈ [0,∞).

Subtracting f(x) and g(x) gives (f − g)(x) = x2 −
√
x. The domain is the same as

(f + g)(x) (for the same reason), which was x ∈ [0,∞). The range is much harder to find.

We won’t cover how to do it, as there is a much better method in Calculus. The range is
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y ∈

[
3

√
1

256
− 6

√
1

16
,∞

)
. (g − f)(x) produces the same result for the domain, except the

range becomes the opposite: y ∈

(
−∞, 6

√
1

16
− 3

√
1

256

]
.

Multiplying the functions gives (f · g)(x) = x2 ·
√
x = x5/2. The domain of this function

is super simple: x can’t be negative. Thus, x ∈ [0,∞). The range of this function follows the
√
x part, which is y ∈ [0,∞).

There are two divisions. The first is
(
f

g

)
(x) =

x2√
x

= x3/2. In this case, since

the denominator can’t equal zero, x 6= 0. So, the domain is x ∈ (0,∞). The range then

becomes y ∈ (0,∞) since (0, 0) was the point that is no longer in the domain. The second is(
g

f

)
(x) =

√
x

x2
= x−3/2. The denominator can’t equal zero, meaning x 6= 0. The domain is

thus x ∈ (0,∞). The range is y ∈ (0,∞) for the same reason as the first division.

There are two compositions. The first is (f ◦ g)(x) = (
√
x)

2
= x. Due to the square

root, the domain is x ∈ [0,∞), and due to the square, the range is [0,∞). The second is

(g ◦ f)(x) =
√

(x2) = |x|. The domain, thanks to the square, is x ∈ R. The range, due to the

square root (and absolute value), is y ∈ [0,∞).�

The last two functions present an interesting case regarding composite functions. (g ◦f)(x)

is interesting in that its domain and range are exactly the same as f(x). But the minute the

functions switch places, the domain changes drastically.

(f ◦ g)(x) places a restriction on the domain because the square root function only takes

positive numbers, while the quadratic takes all numbers. Thus, the most limiting of these must be

considered. The last two composition examples bring up a key point about composing functions.
�

Important: Whenever functions are composed, there may be a change of domain. Be sure

to look out for any changes or anything that cancels. Also remember to consider the original

domain of the function that is being placed into the other.

Let’s look at another example.

Example 2.26: Suppose f(x) =
1

x
and g(x) =

x− 2

x+ 2
. Find (f ◦ g)(x) and (g ◦ f)(x). Note

any domain and range restrictions.

Solution: Here is the work to find the two compositions:

(f ◦ g)(x) =
1

x− 2

x+ 2

=
x+ 2

x− 2

(g ◦ f)(x) =

1

x
− 2

1

x
+ 2

=

1− 2x

x
1 + 2x

x

=
1− 2x

1 + 2x

The domain of (f ◦ g)(x) is x 6= 2 or x ∈ (−∞, 2) ∪ (2,∞). It’s not obvious how to find the

range, but remember that the range of a function is the domain of its inverse. So, we find the

inverse!

x =
y + 2

y − 2
=⇒ xy − 2x = y + 2 =⇒ y(x− 1) = 2x+ 2 =⇒ (f ◦ g)−1(x) =

2x+ 2

x− 1
.
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We skipped a few steps, so we’ll leave it to you to confirm it. The inverse has a domain restriction

at x = 1. So the domain of the inverse is x ∈ (∞, 1) ∪ (1,∞). This means that the range of the

inverse is y ∈ (∞, 1) ∪ (1,∞).

The domain of (g ◦ f)(x) is x 6= −1

2
, or x ∈

(
−∞,−1

2

)
∪
(
−1

2
,∞
)
. The range can be

found in the same way as f ◦ g)(x): finding the inverse. We get the inverse as

x =
1− 2y

1 + 2y
=⇒ x+ 2xy = 1− 2y =⇒ y(2x+ 2) = 1− x =⇒ (g ◦ f)−1(x) =

1− x
2x+ 2

.

Again, we skipped a few steps (you know the drill). The inverse has a domain restriction at

x 6= −1, so the range of the function is y ∈ (−∞,−1) ∪ (−1,∞).�

Notice how the domain changed for (g ◦ f)(x) because an x canceled. This shows how

when one simplifies composite functions, a new domain can be created.

With this, we conclude our review of piece-wise functions and function combinations and

are ready to conclude the chapter.

K Chapter 2 Review Problemsk

1. Write the following inequalities in interval notation:

(a) x ≥ 7 (b) 5 ≤ x ≤ 25

(c) 12 ≤ x ≤ 25

2
or x = 5 (d) x ≤ 7 or x = 9 or x ≥ 12

2. Find the domain and range of each of the functions.

(a) f(x) = 2x2 + 3 (b) f(x) = 3 +
√

12− (x− 3)2

(c) f(x) =
1

2 +
√
x− 1

(d) f(x) =
2x− 3

3x− 1

3. Determine the domain of f(x) =

√
2x− 1

x− 3
and g(x) =

√
2x− 1√
x− 3

. Are they the same?

Why or why not?

4. Simplifying
x2 − x
x− 1

we get
x(x− 1)

x− 1
= x. Are f(x) =

x2 − x
x− 1

and g(x) = x are the

same? Why or why not?

5. Given the following equations, determine whether each function is one-to-one on their

respective domains.

(a) f(x) = 2x2 − x+ 3 (b) f(x) =
1

2x− 1
(c) x2 + y2 = 100 (HINT: this is a circle, r = 10, and is centered at (0, 0).)

(d) x = y2 − y − 2 [?]

6. Find the inverse of the given functions. If a domain restriction is needed, add the appropriate

restriction.

(a) f(x) = x2 (b) f(x) =
x− 2

x+ 2
(c) f(x) =

1

x4

7. Graph the given functions. Also, without calculating the inverse, sketch f−1(x).

(a) f(x) = (x−1)2 (b) f(x) =
√

2x− 1 (c) f(x) =
3

2x+ 4
+1

8. Let f(x) =
3x

x+ 2
and g(x) =

2x

x+ 3
. Compute (f ◦ g)(x).
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9. Let f(x) = ax2 + bx+ c and g(x) = ax2 + bx− c where a, b, c ∈ R. If f(1) = g(1) + 1

and f(2) = 2, find g(2).

10. Let f(x) = −x2 + 1. Graph each of the following:

(a) f(x− 2) (b) −f(x)

(b) 2f(x) + 1 (d)
1

2
f(2x− 3) + 1

11. Suppose that (f ◦ f)(x) = (f ◦ g)(x) for all real x. Must f and g be the same function?

Prove your response.

12. Suppose that a function f(x) is defined in R. How can you use f(x) to determine the

graph of |f(x)|?

13. Let f(x) =
2x− 3

3x− 1
. Determine f−1(4) without computing f−1(x).

14. Graph the following piece-wise function: f(x) =


x5 x ≤ 0

1

x2
+ 1 0 < x ≤ 5

1/2 x > 5

.

15. Let f(x) =
2x− 1

2x+ 1
where |x| 6= −1

2
. Compute f(x) · f(−x).

K Chapter 2 Challenge Problemsk

1. Suppose that a function f(x) has domain (−3, 2). Find the domains of the following

functions:

(a) f(x+ 1) (b) f(1/x) (c) f(
√
x) (d) f

(
x− 1

x+ 1

)
[?]

2. Prove that f(x) = x2 − x and g(x) =
1

2
+

1

2

√
1 + 4x are inverses over their respective

domains.

3. Let f(x) =
ax+ b

cx+ d
where a, b, c, d ∈ R+. In terms of these constants, determine the

value not in the range of f .

4. Let f(x+ 1) = 2x− 1. Determine f
(
x2 + 1

)
.

5. The function f defined by f(x) =
kx

x− 1
satisfies (f ◦ f)(x) = x for all real numbers x

except x = 1. Determine the value of k.

6. Let f(x) and g(x) be invertible functions such that h(x) = (f ◦ g)(x). In terms of f , g,

and their inverses, find h−1(x).

7. Let f(x) =
1

5
5
√
−6(x− 4)− 5− 3.

(a) Describe the transformations made from the parent function and graph it.

(b) Determine whether the function is even, odd, or neither.

(c) Find f−1(x) and determine the domain and range of f(x) and f−1(x).
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Anyone reading this text, up to this point, should know that the square of any real number is

positive. For example, 22 = 4, (−3)2 = 9, etc. What would happen if the square of a number

was negative? What value of x would make x2 = −1 or x2 + 1 = 0 true?

Some people might claim that there are no solutions. As previously states, the square of

any real number is positive, so this is impossible. Even looking at the graph, it’s not possible.

y(x) = x2 + 1 never goes below the x-axis. Mathematicians pondered this idea for centuries,

wondering what type of number could satisfy this equation. It wasn’t until 1777 that Euler

defined a constant to represent this value, i. He defined i such that i2 = −1, or i =
√
−1.

An imaginary number is a number whose square is a non-positive, real number. A real

number is a number that can be plotted on the number line.

A complex number is any number in the form z = a + bi, where a, b ∈ R. Complex

numbers contain two parts: the real part and the imaginary part. a represents the real part and

b represents the imaginary part. Note that all numbers are complex numbers; real numbers are

defined as b = 0 and imaginary numbers are defined as b 6= 0. The symbolC is used to represent

the set of complex numbers.

3.1 Arithmetic of Complex Numbers

Complex numbers follow arithmetic very similar to real numbers. The main difference

comes in multiplication and division. Let’s consider complex numbers in the same way as linear

functions; note the similarity between f(x) = α + βx and z = a+ bi. If you wanted to add or

subtract two linear functions, f1(x) and f2(x), you would combine like terms:

f1(x) + f2(x) = (α1 + β1x) + (α2 + β2x) = (α1 + α2) + (β1 + β2)x,

f1(x)− f2(x) = (α1 + β1x)− (α2 + β2x) = (α1 − α2) + (β1 − β2)x.

Consider the addition and subtraction of complex numbers in the same way:

z1 + z2 = (a1 + b1i) + (a2 + b2i) = (a1 + a2) + (b1 + b2) i,

z1 − z2 = (a1 + b1i)− (a2 + b2i) = (a1 − a2) + (b1 − b2) i.
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Using the same mentality, we will consider the multiplication of two complex numbers. Let’s

multiply the same linear functions:

f1(x) · f2(x) = (α1 + β1x) · (α2 + β2x) = α1 (α2 + β2x) + β1x (α2 + β2x)

= α1α2 + α1β2x+ α2β1x+ β1β2x
2 = α1α2 + (α1β2 + α2β1)x+ β1β2x

2

That looks like a mess. We will learn a better way to think about this multiplication in Chapter

5. Let’s try to do the same thing with imaginary numbers:

z1 · z2 = (a1 + b1i) · (a2 + b2i) = a1 (a2 + b2i) + b1i (a2 + b2i)

= a1a2 + a1b2i+ a2b1i+ b1b2i
2 = a1a2 + (a1b2 + a2b1) i+ b1b2i

2

= (a1a2 − b1b2) + (a1b2 + a2b1) i

Note that, in that last step, i2 = −1! We defined that at the beginning of the chapter, so it’s

important that we remember it when we do multiplication so we can further simplify.

The last operation we have is division and it’s the trickiest of them all. The form of z1/z2
is (a1 + b1i) / (a2 + b2i), but there’s an issue with that. Unlike linear functions, we can’t leave

imaginary numbers like this. Why? Remember that i =
√
−1. Keeping radical numbers in the

denominator means the fraction is un-simplified, so we need to remove it. How did we do that

with radicals? We multiplied by the conjugate!

Definition 3.1. Conjugate

♣The conjugate of a complex number z = a+ bi is z = a− bi.

Let’s attempt to find a simplified form of the conjugate:
a1 + b1i

a2 + b2i
=
a1 + b1i

a2 + b2i
·
(
a2 − b2i
a2 − b2i

)
=

(a1a2 + b1b2) + (a2b1 − a1b2) i
a22 + b22

We skipped some steps in the process, so we’ll leave it to you to check the final answer. This,

like multiplication, yields a messy answer in variable form; we don’t recommend memorizing

this formula, but rather computing each problem individually.

Note the denominator is a real number. This is always true, and important enough to put

inside a note:
�

Important: The product of a complex number and its conjugate pair is a real number.

Let’s consider a few examples below:

Example 3.1: Let z1 = 5− 2i and z2 = −1 + 3i. Compute z1 + z2, z1− z2, z1 · z2, and z1/z2.
Solution: We add complex numbers by adding the real and imaginary parts separately:

z1 + z2 = (5− 1) + (−2 + 3) i = 4 + i.

We do the same thing for subtraction:

z1 − z2 = (5 + 1) + (−2− 3) i = 6− 5i.
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We use the distributive property to multiply complex numbers:

z1 · z2 = (5− 2i) · (−1 + 3i) = 5 (−1 + 3i)− 2i (−1 + 3i)

= −5 + 15i+ 2i− 6i2 = −5 + 17i+ 6 = 1 + 17i.

We multiply by the conjugate to simply complex numbers:
z1
z2

=
5− 2i

−1 + 3i
·
(
−1− 3i

−1− 3i

)
=
−5 + 2i− 15i+ 6i2

1 + 9
= −11

10
− 13

10
i.

�

Example 3.2: Let f(x) = (2− 3i)x2−(7− 2i)x−4+5i. Compute f(1), f(i), and f(1−2i).

Solution: Finding f(1) is simple enough:

f(1) = (2− 3i) (1)− (7− 2i) (1)− 4 + 5i = 2− 3i− 7 + 2i− 4 + 5i = −9 + 4i.

f(i) is also pretty easy to find. Don’t forget that i2 = −1:

f(i) = (2− 3i) (−1)− (7− 2i) (i)− 4 + 5i = −2 + 3i− 7i− 2− 4 + 5i = −8 + i.

Finding f(1− 2i) is a much greater challenge. Note that we have to distribute multiple times to

find a simplified answer:

f(1− 2i) = (2− 3i) (1− 2i)2 − (7− 2i) (1− 2i)− 4 + 5i

= (2− 3i) (−3− 4i)− (7− 2i) (1− 2i)− 4 + 5i

= (−18 + i)− (3− 16i)− 4 + 5i = −25 + 22i

�

We’ve already dealt with the i2, but what happens if i is taken to a larger power? Is there a way

to evaluate in, where n ∈ Z? Let’s do some multiplying and see what comes of it:

i2 =
(√
−1
) (√
−1
)

= −1 i3 =
(
i2
)

(i) = (−1) (i) = −i i4 =
(
i2
)2

= (−1)2 = 1

We don’t need to go any beyond this. Why? Because 1 multiplied by anything becomes itself, so

there’s no point. So what does this tell us? We now see that the powers of i repeat every fourth

power, so we now have an easy way of finding in. All we need to do is find the remainder when

n is divided by four. Then use that remainder to find the associated value.
�

Important: The powers of i repeat with period four:

i1 = i5 = i9 = . . . = i

i2 = i6 = i10 = . . . = −1

i3 = i7 = i11 = . . . = −i

i4 = i8 = i12 = . . . = 1

Example 3.3: Compute i12, i78, and i2021.

Solution: For the first part, note that 12/4 = 3R0, so we know the answer
(
i4
)3 (

i0
)

= 1 ·1 = 1.

For the second part, we see that 78/4 = 19R2, so we see that
(
i4
)19 (

i2
)

= 1 · (−1) = −1. For

the last part, we see that 2021/4 = 505R1, thus
(
i4
)505 (

i1
)

= 1 · i = i.�

Remark: In the solution above, R means remainder.
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The last thing that we need to cover in this section is solving simple equations with complex

numbers. Solving these are very similar to real-numbered equations, except we need to keep

complex arithmetic in mind. These examples will cover some of the more unique styles of

questions, but overall, they aren’t too difficult. There’s not much that needs to be said for this

section, so let’s look at two examples.

Example 3.4: Find all values of z such that z2 + 25 = 0.

Solution: Subtracting 25 on both sides of the equation gives z2 = −25. Thus, z = ±
√
−25 =

±5
√
−1 = ±5i.�

Example 3.5: Find all complex numbers z such that
2z + 3i

z − 1
= −4 + 5i.

Solution: Multiplying both sides by the denominator gives

2z + 3i = (−4 + 5i) (z − 1) = −4z + 5iz + 4− 5i.

Putting all the z terms on the left side and the non-z terms on the other gives

2z + 3i = −4z + 5iz + 4− 5i =⇒ 6z − 5iz = 4− 8i =⇒ (6− 5i) z = 4− 8i.

Now we can solve for z.

(6− 5i) z = 4− 8i =⇒ z =
4− 8i

6− 5i
=

4− 8i

6− 5i

(
6 + 5i

6 + 5i

)
=

44− 28i

61
.

�

Remark: Multiplying the denominator assumes it does not equal zero, in this case that z 6= 1,

this must be kept in mind once we find our solution.

There’s nothing else that you need to know to solve most types of arithmetic equations. It is

possible to take the root of a complex number, like
√
i, but this is not something that we need to

worry about. Let’s now look at the Complex Plane, referred to as the Argand Plane, and how to

graph complex numbers.

3.2 The Argand Plane

Any complex number can be represented as a point on the Argand plane. Like the Cartesian

(coordinate) plane, the Argand plane is split into two axes: a horizontal axis and a vertical axis.

On the Argand plane, the horizontal axis is the real axis and the vertical axis is the imaginary

axis. To plot a point (x, y) on the Argand plane, the complex number would have to be in the

form z = x + yi. Thus, for a complex number z = a + bi, a is the number of units in the

x-direction and b is the number of units in the y-direction.

Another similarity with the Cartesian plane is that its center or origin is at 0. Remember,

in the Argand plane we deal with numbers instead of points: the origin of the Argand plane is

z = 0 while the origin of the Cartesian plane is (0, 0).

The real axis of the Argand plane is labelled<(z) and the imaginary axis of the Argand plane

is denoted =(z), where <(z) is the real component of z and =(z) is the imaginary component

of z. For example, <(3 − 2i)=3 and =(3 − 2i) = −2. Some sources (and most students) will
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use Re(z) and Im(z) as their notation; either is acceptable.

Note that if =(z) = 0, the real-valued points are plotted on the real axis. This forms what

we know as the number line.

We are going to work through this section via example as this is the best way to understand

the workings of the Argand plane.

Example 3.6: Plot z = 1 + 2i on the Argand plane. On the same plane, plot z and −z.
Solution: The graph is shown to the right. �

<(z)

=(z)

z

z−z

What do we notice? We see that z and z are

reflections of each other across the real axis, z

and −z are 180-degree rotations of each other

about the origin, and z and−z are reflections of
each other across the imaginary axis.

�

Important: For every complex number z, there

exists:

The point−z that is a 180-degree rotation

of z about the origin.

The points z and z which are reflections

of each other over the real axis.

The points z and−z which are reflections
of each other over the imaginary axis.

These are not something worth memorizing; they should become intuitive after working with the

Argand plane for a little bit.

Now let’s move on to distances in the Argand plane. In the coordinate plane, we have a

distance formula for finding the distance between two points. We said that the shortest distance

between two points, (x1, y1) and (x2, y2) is d =
√

(x2 − x1)2 + (y2 − y1)2. Will this be the

same in the complex plane? The short answer is yes. Remember that, in the Argand plane, we

write points differently; we write points in the form z = a + bi rather than (a, b). Once we get

this out of the way, the method for distance finding is the same. The distance between z = a+ bi

and z = 0 (or the distance between (a, b) and (0, 0)) is
√
a2 + b2.

�

Important: In the Argand plane, we define the distance between some point and z = 0 as the

magnitude of z. The notation for magnitude is ||z||.
Now, how do we find the distance between two points in the Argand plane? We’re going to

use the same distance formula with the coordinate plane; this time, our goal is to find a notation in

terms of the magnitude notation. To find the distance between z1 = a1 + b1i and z2 = a2 + b2i,

we note that these points correspond with (a1, b1) and (a2, b2) in the coordinate plane. That

distance is
√

(a2 − a1)2 + (b2 − b1)2. How can we form that with the given complex numbers?

Subtract them! Since z2 − z1 = (a2 − a1) + (b2 − b1) i, so the distance between two points in

the Argand plane is ||z2 − z1||. We restate this in the following note:
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�

Important: The distance between two points in the Argand plane, z1 and z2, is ||z2 − z1||.
Now that we’ve covered the important aspects of the Argand plane, let’s move on proving certain

properties of complex numbers.

3.3 Real and Imaginary Parts

This section is going to involve more proofs than most students are used to. No, these aren’t

the geometry proofs where you must list statements and reasons; these are simply using given

information to reach a given end goal. With the given information, you can take it in any way

you desire, as long as you use mathematically-sound reasoning. Math competitions such as the

USAMO make students create very rigorous proofs where any formula or theorem used must be

derived in the proof.

Let’s start off by proving some important ideas regarding the conjugates of complex numbers.

These proofs aren’t that hard; it’s simply ensuring that the generalizations work for any complex

number. Let’s attempt to relate the combinations of two conjugates. Let z1 = a1 + b1i and

z2 = a2 + b2i. We then know that z1 = a1 − b1i and z2 = a2 − b2i. Let’s find z1 + z2.

z1 + z2 = (a1 + b1i) + (a2 + b2i) = (a1 + a2) + (b1 + b2) i = (a1 + a2)− (b1 + b2) i.

Let’s attempt to find a relation in terms of z1 and z2. Adding them gives

z1 + z2 = (a1 − b1i) + (a2 − b2i) = (a1 + a2)− (b1 + b2) i.

They’re the same, that means we have z1 + z2 = z1 + z2. Let’s attempt to find a relation with

the product. Finding z1z2 gives

(a1 + b1i) (a2 + b2i) = (a1a2 − b1b2) + (a1b2 + a2b1) i = (a1a2 − b1b2)− (a1b2 + a2b1) i.

Then, we multiply after taking the conjugates and see if they’re equal:

z1 · z2 = (a1 − b1i) (a2 − b2i) = (a1a2 − b1b2)− (a1b2 + a2b1) i.

We skipped a few steps in that process, so we’ll leave the intermediate steps for you to check.

We do see they’re equal! Let’s put these two conclusions in a note:
�

Important: For any complex numbers z1 and z2, z1z2 = z1 · z2 and z1 + z2 = z1 + z2.

The next three things we have to prove will seem very intuitive once we cover them. Note

the wordings of the proofs since each is worded slightly different.

The first (and most obvious) thing we will show is that z = z for any complex number z.

Since z = a− bi, z = a− bi = a+ bi = z.

The next thing we want to find is when z = z. This happens when a− bi = a+ bi, meaning

that b = 0 and a can be any value. What does that mean? This only occurs when z is a real

number.

The last thing we want to find is when z = −z. This happens when a − bi = −a − bi,
meaning that a = 0 and b can be any value. Thus, z must be an imaginary number. We
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summarize these in the following note:
�

Important: Given a complex number z,

z = z for any value of z.

z = z if and only if z is real.

z = −z if and only if z is imaginary.
Remember the difference between imaginary and complex. Imaginary numbers don’t have a real

component, while complex numbers have both a real and an imaginary component.

The last properties to be proven in this section deal with magnitudes of complex numbers.

As we’ve already found a relation using the distance formula (in Section 3.2), we are going to

worry about a new operation now: multiplication.

The first thing we will prove is that zz = ||z||2. while this doesn’t seem very intuitive, the

proof is super simple.

zz = (a+ bi) (a− bi) = a2 + b2 =
(√

a2 + b2
)2

= ||z||2.

The second thing we will prove is a bit more valuable, but a bit more difficult. We want to prove

that ||z1z2|| = ||z1|| · ||z2||. We’ve found that z1z2 = (a1a2 − b1b2) + (a1b2 + a2b1) i before,

so we won’t show it again. Let’s find the magnitude:

||z1z2|| =
√

(a1a2 − b1b2)2 + (a1b2 + a2b1)
2

=
√
a21a

2
2 − 2a1a2b1b2 + b21b

2
2 + a21b

2
2 + 2a1a2b1b2 + a22b

2
1

=
√
a21a

2
2 + a21b

2
2 + a22b

2
1 + b21b

2
2

=
√
a21
(
a22 + b22

)
+ b21

(
a22 + b22

)
=
√(

a21 + a22
) (
b21 + b22

)
=
√
a21 + a22 ·

√
b21 + b22

= ||z1|| · ||z2||.

An alternate solution involves some tricky manipulation using the first proof:

||z1z2||2 = (z1z2) (z1z2) = (z1z2) (z1 · z2) = (z1z1) (z2z2) = ||z1|| · ||z2||.

We summarize our findings in the following note:
�

Important: For any complex numbers z1 and z2, ||z1z2|| = ||z1|| · ||z2|| and zz = ||z||2.
We’re going to end this section with these proofs. The next section has a lot of information; we

will cover solving equations and then further go into detail on graphing in the Argand plane.

3.4 Solving and Graphing in the Complex Plane

This is the last section, and definitely the most difficult, of the complex numbers chapter. This

section has a lot to cover, a lot of math behind it, and non-intuitive graphing.

There isn’t a "general formula" or method to solving complex number equations. You have
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to consider each one on its own. However, it is typically beneficial to define a value z = a+ bi in

most problems to simplify it. In this case, you find values of a and b that make the given equation

true; this is known in higher-level mathematics as the method of undetermined coefficients. Let’s

look at some examples to get an idea of what to expect:

Example 3.7: Solve z + 3z = −3− 7i for z.

Solution: Let z = a+ bi, where a, b ∈ R. Thus, (a+ bi) + 3 (a− bi) = −3− 7i. Simplifying

the left hand side gives 4a− 2bi = −3− 7i. Since we need to match the non-i terms and the i

terms, we say 4a = −3 and−2b = −7, meaning a = −3/4 and b = 7/2, so the desired complex

number is z = −3

4
+

7

2
i.�

Example 3.8: Find all complex numbers z such that z2 = 21− 20i.

Solution: Let’s follow the same strategy. Let z = a+ bi, where a, b ∈ R. Thus,

(a+ bi)2 = 21− 20i =⇒ a2 − b2 + 2abi = 21− 20i.

We get two equations from this: a2 − b2 = 21 and ab = −10. You could experiment to find this

and find that a = 5 and b = −2 or a = −5 and b = 2, but we’ll do it algebraically. Plugging in

a = −10/b into the first equation gives

a2 − 100

a2
= 21 =⇒ a4 − 21a2 − 100 = 0.

You’ll learn about solving different types of these in Section 5.6 when we discuss hidden

quadratics. Letting x = a2, we get

x2 − 21x− 100 = 0 =⇒
x1 = −4

x2 = 5
.

Re-substituting, we get a2 = −4 and a2 = 25. Since a ∈ R, the a2 6= −4, so we get

a2 = 25 =⇒ a = ±5. Using these values we get b = ∓2, so our values of z are z = 5 − 2i

and z = −5 + 2i.�

Example 3.9: There exists a complex number z such that z + ||z|| = 2 + 8i holds true. Find

||z||.
Solution: Let z = a+ bi, where a, b ∈ R. Thus, a+ bi+

√
a2 + b2 = 2 + 8i. Obviously, b = 8.

That leaves a+
√
a2 + 64 = 2. Subtracting a and squaring both sides gives a2+64 = a2−4a+4.

Solving this is simple, a = −15. Since this value isn’t extraneous, we can say the magnitude is√
(−15)2 + (8)2 = 17.�

Now it’s time to discuss the final part of the chapter: graphing. Graphing in the Argand plane is

similar to the coordinate plane; there are slight changes that require some algebraic manipulation

before graphing.

We will start with two simple proofs that will guide these manipulations. We first will show

that <(z) =
z + z

2
and then =(z) =

z − z
2i

. By letting z = a+ bi, we get

z + z

2
=

(a+ bi) + (a− bi)
2

=
2a

2
= a = <(z)

z − z
2i

=
(a+ bi)− (a− bi)

2i
=

2bi

2i
= b = =(z)
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These will be very valuable in this section.
�

Important: For any complex number z, <(z) =
z + z

2
and =(z) =

z − z
2i

.

In Section 3.2, we said that the axes on the Argand plane are <(z) and =(z), meaning that

x ⇐⇒ <(z) and y(x) ⇐⇒ =(z) on the coordinate plane. Let’s think about that conversion

when we consider some of the next examples.

Example 3.10: Find the coordinate plane equivalent for the following graphs:
(a)

z + z

2
= 4

(b) z − z = −2
√

5i

(c) (1 + 2i) z + (1− 2i) z = 12

(d) <(z)=(z) = 1.

<(z)

=(z)
(a)

(b)

(c)

(d)

Solution:
(a) For the first equation, using the note

above, we get <(z) = 4, which is equivalent to

x = 4 on the coordinate plane. This is a vertical

line.

(b) For the second equation, if we divide

by 2i, we get =(z) = −
√

5, which is equal to

y(x) = −
√

5 on the coordinate plane. This is a

horizontal line.

(c) The third one isn’t so easy. Letting z =

a+bi, we get (1+2i)(a+bi)+(1−2i)(a−bi) =

12. Expanding, rearranging, and simplifying

gives a− 2b = 6, or <(z)− 2=(z) = 6. This is

equal to x− 2y(x) = 6 or y(x) =
1

2
x− 3. This is a line of slope 1/2 and y-intercept at (0,−3).

(d) The last one isn’t too bad. The equation is equal to xy(x) = 1, or y(x) = 1/x. This is

a standard rational function, or as seen in Section 13.5, is a hyperbola rotated 45 degrees about

the origin.�

The final types of graphs in the Argand plane deal with magnitudes. Remember that a magnitude

is a scalar quantity representing the distance from the point to the origin. With that in mind, let’s

consider the final example of the chapter.
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Example 3.11: Identify and describe the shape of the graph for the following equations:
(a) ||z|| = 3

(b) ||z − 1 + i|| = 2

(c) ||z − z0|| = r

Note that z0 ∈ C and r ∈ R+.

<(z)

=(z)

(a)

(b)

Solution: Let’s consider the first equation. The
equation denotes all z such that the distance be-

tween z and the origin is 3. Thus, we see this as

a circle of radius 3.

Similar to how we shift a circle, the second

equation is simple a shift of the circle. Rewriting

as ||z − (1− i)|| = 2, we see a shift of 1 to the

right and 1 unit down. This is a circle of radius

2 with center at 1− i.
The final equation is just a general form of

the second. It’s a circle with center at z0 and a

radius of r. We didn’t draw this one.�

Overall, this chapter wasn’t too bad. Simply remembering some of the rules that we derived,

along with the fundamentals of graphing on the Argand plane, students should have no issue.

K Chapter 3 Review Problemsk

1. Let z1 = 1 + 3i and z2 = 2− 5i. Express each of the following as a complex number:

(a)
1

z1
(b)

2

z1 + z2
(c)

z41 + 2z31z2 + z21z
2
2

z31z2 + z31z
2
2

2. Find the complex number z that satisfies
z

z + 2
= 1− i.

3. Convert each of the Cartesian equations into Argand equations.

(a) x = 2

(b) y(x) =
3

2
x− 1

(c) (x− 1)2 + y2 = 4

4. Find the area of the region enclosed by the graph of ||z − 3 + 2i|| = 3
√

2.

5. Simplify: (i+ 1)3200 − (i− 1)3200.

6. Solve each of the following linear equations for z.

(a) z2 = 2i

(b) 3z + 4z = 12− 5i

(c) z2 = 24− 10i
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7. Simplify:
1

1 +
1

1− 1

1 +
1

1− i

.

8. Find all complex numbers z such that ||z + 2− 3i|| = ||z + i||.

9. Evaluate i+ 2i2 + 3i3 + 4i4 + . . .+ nin in terms of n. Note that n is an even multiple of

four.

10. Find all real numbers k such that 3 + i is five units from 6 + ki on the Argand plane.

11. Find all complex numbers z such that
z

z
is

(a) a real number (b) an imaginary number.

12. Let S be the set of points in the Argand plane such that (1 + 2i)z is a complex number.

Describe the graph of S.

13. Let z1 and z2 be complex numbers. Show that
z1
z2

+
z1
z2

is a real number.

K Chapter 3 Challenge Problemsk

1. For each part, find an equivalent equation in the Cartesian plane.

(a) (1− 2i)z + (1 + 2i)z = 10

(b) |z + 2− 5i| = 3
√

2

(c) |z − 4− i| = |z − 7 + 2i|

2. Two solutions of x4 − 2x3 + 8x2 + 18x− 153 = 0 are complex numbers. Find these two

solutions. (HINT: try to factor by grouping!)

3. Find the area of the region of points such that |z+ 4− 4i| ≤ 4
√

2 and |z− 4− 4i| ≥ 4
√

2.

(HINT: make sure you know what area you’re finding. Try connecting the intersection

points to the centers. What shapes form?) [?]

4. Let, for a non-zero complex number, f(z) = 1/z.

(a) Show that f(f(z)) = z for all z 6= 0.

(b) Let x = f(z). As z varies along the line (1 + i)z − (1− i)z = i, what curve does x

trace?

5. Find all ordered pairs (x, y) that satisfy the system of equations


x+

x+ 8y

x2 + y2
= 2

y +
8x− y
x2 + y2

= 0
.

(HINT: this is in the complex numbers chapter for a reason ...)

6. Let z1 and z2 be complex numbers such that ||z1|| = ||z2|| = 1, z1 6= z2 and z1 6= −z2.
Prove that

4z1z2

(z1 + z2)
2 is real and

z1 + z2
z1 − z2

is imaginary.
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Linear functions, other than constant functions y(x) = c (c ∈ R), are the most basic functions

one can possible have. This fact makes these functions fundamental when it comes to learning

algebra and applying it in the real world. All (univariate) linear functions can be put in the

form y(x) = mx+ b wherem and b are real numbers (m 6= 0 as this would result in a constant

function). One essential property which makes these functions so useful is that the rate of change

or slope of the function is constant at every point; visually, this means the graph of the function

does not curve.

One common application which you, the reader, have most likely used without realizing

it is unit conversion. For example, when converting between inches and feet, it is understood

that every 12 inches in some given length is equivalent to 1 foot; this can be put into a linear

relationship given by f(i) =
i

12
where f(i) represents the number of feet given a number of

inches, and i is the number of inches. This relationship is based on the idea that 12 inches will

always equal to one foot, taking advantage of the property of a constant slope mentioned earlier

seen in all linear functions.

This will be one of the shortest chapter in this text. This entire chapter should serve as a

review, but we included it to provide a comprehensive Algebra book. Please read this chapter

just like any other to make sure you didn’t forget any information.

4.1 Linear Functions

Before we begin this section, it should be noted that most (if not all) of the material should be

review from Algebra 1 and 2.

As previously stated in the introduction, all linear functions can be put into the form

y(x) = mx+ b, this is arguably the most common form, generally referred to as slope-intercept

form. Indicative of the name, this form contains two pieces of information: the slope and

y-intercept of the function.

Given two points with coordinates (x1, y1) and (x2, y2), the slope can be calculated by:

m =
"rise"
"run"

=
y2 − y1
x2 − x1

=
∆y

∆x
.
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�

Important: This is something that should already be memorized! If not, commit it to memory

as we will use this frequently for the rest of the chapter and in future chapters.

One of the downsides to slope-intercept is that the y-intercept cannot be directly calculated

when given the coordinates of two points on the line (unless the y-intercept is directly shown). For

this reason, another form is often used as an intermediate step when solving for slope-intercept:

point-slope form.

Again, given two points with coordinates (x1, y1) and (x2, y2), point-slope form can be

constructed with the following equation:

y(x)− y1 = m (x− x1)

y(x)− y1 =
y2 − y1
x2 − x2

(x− x1)

�

Important: Like the slope formula, the first formula should already be memorized. Don’t

bother with the second one as it’s a simple substitution of a formula you should have memorized.

Finally, we have the last form of linear functions: standard form. While this form tends to

have less applications, it is still useful to know (as will be seen later in Section 4.3). The standard

form of linear equations is given by:

ax+ by(x) = c; a, b, c ∈ Z, a > 0.

Let’s look a few examples that ask you to convert between forms.

Example 4.1: Convert the linear equation 2y(x)+4 = 6x into slope-intercept form and standard

form.

Solution: First, we will attempt to put the linear equation into slope-intercept form. To do this,

we want to isolate the y term; we will do this by first subtracting 4 from both sides. Then, we

will divide by two so that only y(x) will remain on the left side; this will leave us with the

slope-intercept form of the equation.

2y(x) = 6x− 4 =⇒ y(x) =
6x− 4

2
= 3x− 2.

Now, we will move on to putting the equation into standard form. To reach standard form, we

want the two variables on one side and the constant on the other.

−6x+ 2y(x) + 4 = 0 =⇒ −6x+ 2y(x) = −4 =⇒ 6x− 2y(x) = 4.

�

Remark: If you solve the second equation for y(x), you will get the first equation. That’s a way

of validating your answers.

The final skill for this section is to get an equation based on a graph. To do this, all we need

are two points. We need both points to identify the slope of the graph and one of the points to

determine the intercept. Choose points that will be easy toworkwith; the easiest points are always

ones with integer values. If you have the option to choose the intercept, choose the intercept.
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x

y(x)

(2, 0)

(4, 6)

Example 4.2: Based on the graph to the right, determine the equation

of the line in slope-intercept form.

Solution: Since we cannot directly see the y-intercept of the graph, we
must use point-slope form as an intermediate step. Note the coordinates

of the two points given to us on the line: (2, 0) and (4, 6).

m =
y2 − y1
x2 − x1

=
6− 0

4− 2
=

6

2
= 3.

Next, we must plug values into the point-slope formula:

y(x)− 0 = 3(x− 2).

Simplifying gives us the slope-intercept form: y(x) = 3x− 6. �

Remark: Note that we could have used the point (4, 6) when finding the slope-intercept and

this would have given us the same answer.

This concludes the section on linear functions. Let’s discuss the inverse of linear functions.

4.2 Inverses of Linear Functions

Now that we have covered the basics of linear functions, we can now get into what can

be done with these functions. The next three sections will cover various uses, properties, and

applications of linear functions with more advanced topics; this section will be covering inverses

of linear equations.

To start off, let’s review the basics of taking an inverse as discussed back in section 2.4.

When solving for an inverse the independent variable (usually x) and the dependent variable

(usually y(x) or f(x)) are switched; the dependent variable is then solved for. Let’s take a look

at an example:

Example 4.3: Find the inverse, f−1(x), of f(x) = 3x− 2.

Solution: As previously stated, we first need to switch the independent and dependent variables.

f(x) = 3x− 2 =⇒ x = 3f−1(x)− 2.

Rearranging and simplifying leaves us with the inverse function. We get x + 2 = 3f−1(x), or

f−1(x) =
1

3
x+

2

3
. �

Now that you understand how to solve for an inverse given a linear equation, we’ll move on

to a geometric property what can be used to show that two functions are inverses of each other:

inverse functions are reflections of each other about the line y(x) = x. This can be seen in the

graphs below.

This graphs shows two functions, f(x) and g(x), and their respective inverses as well as the

line of reflection (dotted). In the graphs, f(x) = 2x− 3, f−1(x) =
1

3
x+

2

3
, g(x) = x+ 2, and

g−1(x) = x− 2.

One common way of thinking about this reflection property of inverses is that if you were
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x

y(x)

f−1(x)

f(x)

x

y(x) g(x)

g−1(x)

to “fold” the graph diagonally along the line y(x) = x, functions that are inverses of each other

would be folded onto each other.

Another essential property of inverses − arguably their defining property − is that if you

compose a function with its inverse (or vice versa) you end up with simply x. That is to say:

f−1 (f(x)) = f
(
f−1(x)

)
= x.

This fact can act as a way to check to make sure two functions are inverses of each other.

Let’s use this in an example.

Example 4.4: Find the inverse, f−1(x), of f(x) = 2x − 4. Then, on the same graph, sketch

both f(x) and f−1(x). Finally, use the statement above to prove f(x) and f−1(x) are inverse

functions.

Solution: Starting off, let’s solve for f−1(x). We do this first by switching the independent and

dependent variables. This yields:

x = 2f−1(x)− 4.

Rearranging and solving for f(x) gives

2f−1(x) = x+ 4 =⇒ f−1(x) =
1

2
x+ 2.

Next, we will graph the two functions (along with y(x) = x) to visually confirm that f(x) and

f−1(x) are inverses using the reflection property stated above. The graph is shown at the top of

the next page due to spacing purposes.

Finally, let’s check to make sure these functions are inverses. We find both f
(
f−1(x)

)
and

f−1 (f(x)):

f
(
f−1(x)

)
= f

(
1

2
x+ 2

)
= 2

(
1

2
x+ 2

)
− 4 = x+ 4− 4 = x

f−1 (f(x)) = f−1 (2x− 4) =
1

2
(2x− 4) + 2 = x− 2 + 2 = x

Now that we’ve algebraically and graphically proven that these functions are inverses, we can

confirm that we are indeed correct. �

This is all we need to cover for this section. Let’s discuss the final section of this chapter:

piece-wise linear functions.
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x

y(x) f(x)

f−1(x)

4.3 Piece-wise Linear Functions

Finishing up the chapter we have understanding and graphing linear piece-wise functions.

While these functions aren’t used incredibly often currently, they do have their applications in

the real world and in higher-level mathematics. Piece-wise functions in general can be thought

of as a sort of Frankenstein’s monster: pieces of different functions mashed together into a single

function.

In the case of linear piece-wise functions, we take two or more lines, chop them up, and

put the pieces we want into a single function. This idea can be best understood by graphing.

x

y(x)

Here we can see the graph of the linear piece-wise function:

y(x) =

x− 1 x < 5

7− x x ≥ 5
.

Something which piece-wise functions can do, something that you

probably haven’t seen in any other function up until now, is that the

function is not continuous; in layman’s terms, this means the graph has a “break” in it. We

can see that the graph appears to get closer to a y-value of 4 as we move along the first line

f(x) = x − 1; all of a sudden however, once we reach x = 5 the graph magically moves down

to a y-value of 2 onto the second line g(x) = 7 − x. This idea of “continuity” (or, in this case,

discontinuity) is extremely important later on in Calculus.

x

y(x)

Let’s take a look at another example with just 2 lines so you can try

graphing it.

Example 4.5: Graph the linear piece-wise function

y(x) =

2− x x ∈ (−∞, 0]

1

2
x+ 1 x ∈ (0,∞)

.

Solution: Based on the interval to the right of the equations, we want to graph
f(x) = 2 − x for all x-values that are negative (and 0); likewise, we need to graph the second
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function g(x) =
1

2
x + 1 for all positive values of x. This leaves us with the final graph on the

right.

x

y(x)

Let’s do one more example to finish the chapter off, this time with three

segments. Remember that three segments works just the same as two. This

example will also have you use the graph to deduce the function; follow the

same process for this as you would any other function. Simply keep domain

restrictions in mind.

Example 4.6: Write down the piece-wise function corresponding to the fol-

lowing graph.

Solution: Let’s go from left to right, figuring out the different segments we have in the graph.

On the left we have a line with slope 1 and y-intercept of 1; this segment goes from −∞ to 1.

This gives

y1(x) = mx+ b = x+ 1 x ∈ (−∞, 1].

For the middle section, we see the line has a slope−1

2
but no y-intercept is shown; therefore, we

must use the point slope formula (we will use the point (1, 3) from the segment):

y2(x) = y0 +m(x− x0) = 3− 1

2
(x− 1) = −1

2
+

7

2
x ∈ (1, 3).

For the final right-most segment, we see it has a slope of 2, however once again no y-intercept is

shown so we must use the point-slope formula again; this segment stretches from 3 to∞.

y3(x) = y0 +m(x− x0) = 1 + 2(x− 3) = 2x− 5 x ∈ [3,∞).

Putting this all together gives us our final function:

y(x) =


y1(x)

y2(x)

y3(x)

=


x+ 1 x ≤ 1

−1

2
x+

7

2
1 < x < 3

2x− 5 x ≥ 3

.

�

This is everything we needed to cover in this chapter. Again, it was very short. Ensure

that you have complete mastery of the skills used here so that we can continue to refer to them

throughout the text. This chapter also does not have a challenge set; the problems don’t get overly

difficult.

K Chapter 4 Review Problemsk

1. For each part, graph f(x) and f−1(x) without computing f−1(x).

(a) f(x) = 4 (b) f(x) = 2x

(c) f(x) =
1− 7x

3
(d) f(x) =

1

2
x− 1

2. What value of x satisfies x− 3

4
=

5

12
− 1

3
?
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3. Graph y(x) =


2x− 3 −∞ < x ≤ 2

1− 7

2
x 2 < x ≤ 3

4 x > 3

.

4. Determine the range of the following functions over the given domain.

(a) f(x) = 4 (b) f(x) = 7x− 2

(c) f(x) =
3

2
− 4

3
x (d) f(x) =

5x− 4

16

5. Solve: x−
1− 3x

2

4
=

2− x
4

3
− 11

12
for x.

6. Solve the following word problems.

(a) A number is equal to 7 times itself minus 18. Which is the number?

(b) A number is equal to 4 times this number less 75. What is the number?

(c) Two times a number, decreased by 12 equals three times the number, decreased by 15.

Which is the number?

(d) Twice a number equals 5 times the same number plus 18. Which is the number?

7. Let f(x) =
4x− 5

12
. Determine the smallest integer n such that f(n) > 0. .

8. Without computing f−1(x), determine the intersection point of f(x) =
1

3
x − 3 and

f−1(x).

9. For the following functions, compute f−1(x). Note that a1, a2 ∈ R and a1, a2 6= 0.

(a) f(x) = x− 1 (b) f(x) =
2x− 1

3

(c) f(x) =
5

6
x− 4

5
(d) f(x) = a1x+ a2

10. Suppose f(x) = kx + k where k ∈ R. Find all values of k such that f(x) · f−1(x) =

x2 − 3x− 4.

11. An ideal spring is defined such that the force (F , in Newtons) exerted is proportional to

the compression distance (∆x, in metres). A physics teacher wants to test this constant of

proportionality, called the spring constant (k, in Newtons per meter). He attaches a spring

to the ceiling with two different weights. The 1.5N block stretches the spring 0.25m and

the 2.4N block stretches the spring 0.4m. Determine the value of k, the spring constant.

12. Let f(x) =

1− 2x x ≤ k
3

2
x− 5 x > k

. Determine the value of k that makes f(x) continuous.

13. Let f(x) be a linear function such that f(6)− f(2) = 12. Compute f(12)− f(2). [?]

14. Determine the area bound by the x-axis, the y-axis, and y = 1− 2x. [?]
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Quadratic Polynomials, commonly referred to as quadratics, are polynomials of the second-

degree with real coefficients. In Chapter 4, we covered linear functions in slope-intercept form,

point-slope form, and standard form. We also found a way to start at each form and arrive at

another. Our goal is to do the same for quadratics.

Like quadratics, we have a standard form. For a, b, c ∈ R and a 6= 0, the standard form of a

quadratic is

f(x) = ax2 + bx+ c.

The solutions to the quadratic equation are known as roots or zeroes. The ax2 term is

known as the quadratic term, the bx term is the linear term, and c is the constant term.

x

y(x)

The parent function in this chapter is f(x) = x2 with domain R.

Most of us, from Algebra I, know that the graph is a "U"-shape.

The graph of f(x) = x2 is shown to the right. We note the vertex

is at (0, 0) and the only zero is at (0, 0). The next challenge is to

determine how to graph the same function if there is a linear and

constant term. We’ll have to resort to the other two forms.

This chapter will detail the processes for solving quadratics of

all different types as well as an easy-to-follow method for graphing

quadratics.

5.1 Quadratics in Vertex Form

The first type of quadratics that we will deal with are quadratics in vertex form. These quadratics

highlight the vertex of the polynomial and the measure of compression. The form of a quadratic

in vertex form is

y(x) = a(x− h)2 + k.
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In this case, a is the measure of compression while (h, k) is the vertex of the polynomial. Note

that this a is the same a that was in the standard form in the introduction! This means that the

same value of a in the standard form also represents the measure of compression.

If a quadratic is in vertex form, it can be solved with square roots. To solve this, we follow

a very simple process. First, rearrange the equation to isolate the square. Then, take the square

root of both sides and note the two resultant solutions. Solve each resultant equation separately

for x. Let’s try a few examples of this.

Example 5.1: Solve (x+ 1)2 − 6 = 0.

Solution: Isolating the squared quantity, we get (x+1)2 = 6. Take the square root: x+1 = ±
√

6,

meaning that x1 = −1−
√

6 and x2 = −1 +
√

6. �

Example 5.2: Solve 2(x− 3)2 − 9 = 9.

Solution: Isolate the squared quantity: (x − 3)2 = 9. Take the square root: (x − 3) = ±3.

Solve for x: x1 = 0 and x2 = 6.�

Example 5.3: Solve 3(x− 1)2 = 0.

Solution: Isolate the squared quantity: (x− 1)2 = 0. Take the square root: (x− 1) = 0. Solve

for x: x1,2 = 1.�

Example 5.4: Solve 2(x+ 2)2 + 12 = 6.

Solution: Isolate the square quantity: (x+ 2)2 = −3. Take the square root: (x+ 2) = ±i
√

3.

Solve for x: x1 = −2− i
√

3 and x2 = −2 + i
√

3. �

Let’s review transformations for functions in vertex form. While this was covered generally

for functions in Section 2.4, we will specifically cover quadratics in vertex from for this.

The vertex form is a shifted form of the parent function f0(x) = x2. To reach the

general form f(x) = a(x − h)2 + k, f0(x) is shifted to the right h units, up k units, and is

horizontally stretched by a factor of |a|. If a < 0 then f(x) is inverted. Let’s attempt an example.

x

y(x)
f(x)

Example 5.5: Sketch f(x) = (x− 1)2 − 4.

Solution: The vertex of the quadratic is at (1,−4). Since a = 1 > 0,

it is upright. We get the y-intercept to be (−1)2 − 4 = −3. Solving

f(x) = 0, we get (−1, 0) and (3, 0) for the x-intercepts. (Be sure to

check this!) Using the basic shape of a quadratic, we get the graph

to the right. �

Let’s discuss domain and range with quadratics. Because

quadratics are polynomials, quadratics are bounded on R. De-

pending on the orientation of the quadratic, the vertex will either

indicate the minimum or maximum for the range. If a > 0 (oriented

upward), then the vertex represents the minimum. If a < 0 (oriented downward), the vertex

represents the maximum. Let’s look at an example where f(x) is given a domain restriction.

Example 5.6: Let f(x) = 2(x− 3)2 + 1 on −1 ≤ x ≤ 5. Find the range of f .
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Solution: The important points in this case are the end points and the vertex. Why? Because

a quadratic only ever changes direction once: at the vertex. Thus, there will be no other critical

point that gives the maximum or minimum other than these points. The vertex is at (3,−1). We

get that f(−1) = 2(−4)2 + 1 = 33 and f(5) = 2(2)2 + 1 = 9. Since the minimum is at (3,−1)

and the maximum is at (−1, 33), we get the range to be y ∈ [−1, 33]. �

Remark: The idea of looking for a minimum and maximum by checking all "critical points"

and the endpoints is known as the closed interval test.

For the last example of this section, our goal is to determine a quadratic equation from

the graph. Using the graph, we need to identify the vertex and one point on the graph. The

easiest point to use is either the y-intercept or an x-intercept. Consider the example below.

x

y(x)

f(x)

(
3
2 ,

25
2

)
(0, 8)

Example 5.7: Find the function f(x) determined by the graph to

the right.

Solution: We know that the basic form of the quadratic is f(x) =

a(x−h)2+k. The vertex, (h, k) is
(

3

2
,
25

2

)
. Nowwe have f(x) =

a

(
x− 3

2

)2

+
25

2
. To find a, we needed another point. Plugging

in the y-intercept, we get 8 = a

(
0− 3

2

)2

+
25

2
. Simplifying,

we get −9

2
=

9

4
a, meaning a = −2. Since a < 0, we know that

the parabola should be inverted (which it is). So, the final result is

f(x) = −2

(
x− 3

2

)2

+
25

2
. �

This concludes our study of the vertex form. We will return to

the vertex form in Section 5.7 when we learn to convert from standard from to vertex form.

5.2 Quadratics in Factored Form

This section involves quadratics found in factored form. These quadratics highlight the

measure of compression and the x-intercepts. The form of a quadratic in factored form is

y(x) = a(x− λ1)(x− λ2)

where λ1 and λ2 are the x-intercepts of the polynomial. Again, a refers to the measure of

compression, just as in the vertex and standard forms.

Recall the zero product property.

Theorem 5.1. The Zero-Product Property

♥

Given two expressions a and b, if ab = 0, then one of three possibilities must happen:

1. a = 0 2. b = 0 3. a = b = 0

If a quadratic is in the factored form, we will solve it using the zero product property. Let’s
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look at some examples to understand this.

Example 5.8: Solve 2x(x− 1) = 0.

Solution: Splitting this into two factors and using the zero product property, we get 2x = 0 and

x− 1 = 0. Solve both for x: x1 = 0 and x2 = 1. �

Example 5.9: Solve (x+ 3)(x− 4) = 0.

Solution: Splitting and using the zero product property gives x+ 3 = 0 and x− 4 = 0. Solving

for x gives x1 = −3 and x2 = 4. �

Example 5.10: Solve (2x− 3)(3x+ 1) = 0.

Solution: Split the equations: 2x − 3 = 0 and 3x + 1 = 0. Solving for x gives x1 = −1

3
and

x2 =
3

2
. Note that we switched around the equations to keep our answers in ascending order. �

Example 5.11: Solve (4x− 5)2 = 0.

Solution: This is the same as saying (4x − 5)(4x − 5) = 0. Splitting, we get 4x − 5 = 0,

meaning x1,2 =
5

4
.�

Now let’s discuss the idea of graphing quadratics in factored form. When in this form, we

are given the x-intercepts and want to find a vertex. Recall that a quadratic is symmetric about

a central vertical line containing the vertex, called the axis of symmetry. Since this is true, we

can find the axis of symmetry by taking the average of the roots. Why? The roots are at the

same y-coordinate, meaning that the average will represent the axis of symmetry at y = 0. If

you graph various functions, you will see that this is true for all quadratic functions. To find the

y-coordinate of the vertex, simply plug in the x-coordinate into y(x).

Let’s try to graph a few examples.

Example 5.12: Graph f(x) = (x+ 1)(x− 7).

Solution: The x-intercepts given here are at x1 = −1 and x2 = 7. To find the vertex, we take

the average of the x-intercepts, which means h =
−1 + 7

2
= 3. To find k, plug this into f(x).

So, f(3) = (3 + 1)(3− 7) = −16. Thus, the vertex is at (3,−16). The graph is shown on the

top of the next page. �

Example 5.13: Graph g(x) = −2(x− 2)(x− 8).

Solution: The x-intercepts given here are at x1 = 2 and x2 = 8. To find the vertex, we

take the average, which is
2 + 8

2
= 5. Finding the y-coordinate of the vertex, we get g(5) =

−2(5−2)(5−8) = 18; thus, the vertex is (5, 18). We plot the parabola given these three points,

and is shown on the top of the next page. �

This was a pretty simple section. One last skill you should ensure you know is how to find

the equation given a graph. All you need to do is find the x-intercepts, then use another point

to determine the compression factor (usually the y-intercept or the vertex works very well). The

rest of the chapter covers the methods to convert between forms; we begin with converting from

factored form to standard form.
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x

y(x)

f(x)

(3,−16)

(7, 0)(−1, 0)
x

y(x)

g(x)

(5, 18)

(8, 0)(2, 0)

5.3 Review: Distribution and F.O.I.L.

This section solely covers material that was introduced in Algebra I. Students should be very

familiar with themethod reviewed in this chapter and should be comfortable applying it in various

situations. Consider an expression in the form

(a+ b)(c+ d)

where a, b, c, d ∈ R. There are two ways to derive this formula - algebraically and geometrically

- and we will derive it both ways. The first method is using the distributive property (like Chapter

3). If we distribute the (c+ d) term to the left side, we get

(a+ b)(c+ d) = a(c+ d) + b(c+ d).

a b

c

d ad bd

ac bc

Then, use the distributive property to split

it.

a(c+ d) + b(c+ d) = ac+ ad+ bc+ bd.

That’s the split form! Now let’s try the geometric

method. Consider the figure to the right where

the area of each rectangle was marked inside. If

we find the area of the largest rectangle, we get

the area as (a+b)(c+d). Adding up the smaller

areas, we get ac+ad+ bc+ bd. This must mean

that

(a+ b)(c+ d) = ac+ ad+ bc+ bd.

This is what we got then first time!

Remark: Again, like most of the ideas or formulas we derive, don’t memorize it. It’s not

beneficial; it’s much better to understand how to apply it and its derivation.

This brings what we call the F.O.I.L. method for multiplying two binomial expressions.

FOIL is an acronym that stands for "First, Outer, Inner, Last" which reminds students how to

multiply the binomials. Let’s try a few examples to make sure that we understand the acronym

and how it works.
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Example 5.14: Expand (x− 2)(x+ 3).

Solution: Following FOIL, we multiply the first terms (x ·x = x2), the outer terms (x · 3 = 3x),

the inner terms (−2 · x = −2x) and the last terms (−2 · 3 = −6). Then, adding them up we get

x2 + 3x− 2x− 6 =⇒ x2 + x− 6.

�

Example 5.15: Expand (2x+ 3)(1− x).

Solution: Following FOIL, we get 2x− 2x2 + 3− 3x = −2x2 − x+ 3.�

This section is super short because we just wanted to cover this topic. We now will move on to

special types of quadratics and their properties.

5.4 Special Quadratics

This section will cover the properties of two special types of quadratics. We’ve already seen one

of them; we just haven’t given it a formal name nor explored it in more detail.

The first special quadratic is the perfect square trinomial. Look at the definition below.

Definition 5.1. Perfect Square Trinomials

♣

A perfect square trinomial is defined that, for some real functions a and b,

(a± b)2 = a2 ± 2ab+ b2.

We’ve done a few examples with these in previous sections. This is super easy to prove

using FOIL, so we challenge you to try this for yourself. Let’s look at a few distribution and

factoring examples.

Example 5.16: Expand (2x− 3)2.

Solution: You can either use the formula or use FOIL. Either way, it produces the same result.

Following the formula, we get (2x)2 − 2(2)(3) + (3)2 = 4x2 − 12x+ 9. �

Example 5.17: Factor 49x2 + 28x+ 4.

Solution: All we need to do is follow the definition in reverse. We see that 49x2 + 28x + 4 =

(7x)2 + 2(7)(2) + (2)2 = (7x+ 2)2. �

The second special quadratic is the difference of squares. Look at the definition below.

Definition 5.2. Difference of Squares

♣

The difference of squares is defined that, for some real functions a and b,

a2 − b2 = (a+ b)(a− b).

We haven’t seen this example yet, so we will prove it. There are two ways of proving this:

algebraically and geometrically. The algebraic method involves proving it using FOIL. All we

need to do is expand the right side of the equation.

(a− b)(a+ b) = a2 + ab− ab− b2 = a2 − b2.
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The second way of proving this is geometrically. Imagine a square with length a where we cut

off a slice of length b, as seen in the first figure. We then attach it to the other side to produce the

second figure.

a

b =⇒

a b

a
−
b

a

We then find the area of each figure. The area of the first figure is a2 as it is a square. The

area of the second square can be done in parts. To get the formula we want, we will divide it into

the entire upper rectangle and the small square on the bottom (as separated by the dashed line).

The area of this is (a+ b)(a− b) + b2. These should be equal, meaning

a2 = (a+ b)(a− b) + b2 =⇒ a2 − b2 = (a+ b)(a− b).

As we can see, this is the formula in the definition box, so we know we have it correct.

Now, let’s try a few examples of this to ensure we understand how use it.

Example 5.18: Distribute (2x− 3)(2x+ 3).

Solution: Following the formula, we know that the expanded form is (2x)2 − (3)2 = 4x2 − 9.

�

Example 5.19: Factor 63x2 − 175.

Solution: Factor out the common factor of 7. This gives 7(9x2 − 25), which factors to

7(3x− 5)(3x+ 5).�

This is all we needed to cover regarding these. We simply wanted to ensure you were aware

of these special forms so you can use them to your advantage. Now, let’s discuss one of the

toughest sections in this chapter: factoring.

5.5 Factoring Standard-Form Quadratics

This may be one of the tougher sections of this chapter and is definitely the most difficult to

teach. There are many ways to factor quadratics, where some are more efficient than others. In

this process, we will disregard any factoring method you may know and discuss the methods we

find to be most effective.

There are three methods in this section, where each method builds on another. It is very

important you understand the previous methods as you move on to the more difficult, as they

become more difficult to understand and more intuitive. We outline each method in its own

subsection; it is imperative that you attempt each problem on your own before reviewing the

solution.
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5.5.1 Splitting the Middle Term

This is the most common factoring technique that used to be taught in schools. Schools now

are using a visual factoring method that we find to be a waste of time and space. Splitting the

middle term offers the best value for the time spent learning and practicing, which makes it a

good investment.

The goal of splitting the middle term (and every other method) is to find two numbers that

multiply to the constant term and add to the linear term. The derivation for this is explained in

the next subsection. Once we do this, we "split" the middle term into these two factors and the

factor by grouping. Let’s try this.

Example 5.20: Factor x2 + 6x+ 8 = 0.

Solution: We need two numbers that multiply to 8 and add to 6. Let’s consider the factors of 8:

1, 2, 4, and 8. Right away we see that 2 + 4 = 6. To split the middle term, we simply rewrite

the function as x2 + (2x+ 4x) + 8. Now, we factor by grouping. To do this, we simply find the

greatest common factor of the first two terms and of the last two terms. This looks like

x2 + 2x+ 4x+ 8 = x(x+ 2) + 4(x+ 2).

We then factor the (x+ 2) from both terms to get

x(x+ 2) + 4(x+ 2) = (x+ 4)(x+ 2).

�

Let’s add some negatives to the problem to see how it changes the way we look at it.

Example 5.21: Factor x2 − 3x− 10 = 0.

Solution: We need two numbers that multiply to −10 and add to −3. We know that these two

numbers must have opposite signs and that the larger number must be negative. The factors of

10 are 1, 2, 5, and 10, and the pair that works is −5 and 2. Splitting the middle term, we get

x2 − 5x+ 2x− 10 = 0.

Factoring by grouping gives

x(x− 5) + 2(x− 5) =⇒ (x+ 2)(x− 5) = 0.

�

What happens when a 6= 1? The problem doesn’t become so easy. We do have a method

for this; however, that makes it seem as easy as this first type of problem. We will use the method

of bringing the leading coefficient to the back and factor as normal.

Example 5.22: Factor 2x2 + 5x− 3 = 0.

Solution: If we bring the leading coefficient (2) to the back, we get the new equationx2+5x−6 =

0. This is something we know how to factor! We look for two numbers that multiply to −6 and

add to 5. Considering the factors of 6, we have 1, 2, 3, and 6. The factor pair that adds to 5 when

the pair has opposite signs is 6 and −1 (Do not fall for the 2 & 3 pair trap!) Splitting the middle
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term, we get

x2 + 6x− x− 6 = 0 =⇒ x(x+ 6)− (x+ 6) = 0 =⇒ (x+ 6)(x− 1) = 0.

But we’re not done! Note that you don’t get the original equation if you FOIL our solution.

Essentially, we multiplied the constant term by 2 in order to factor it; thus, we need to divide the

constants by 2. This gives

(x+ 3)

(
x− 1

2

)
= 0.

Instead of writing the second term like this, we move the 2 to the x term and the root doesn’t

change (be sure you see why). This gives the factors

(x+ 3)(2x− 1) = 0.

�

The only time that this method is ineffective is when the values of a, b, and c are large;

there would be a lot of factors to go through. This is best dealt with in the next section when we

discuss factoring via coefficients.

5.5.2 Factoring via Coefficients

This is a tough method to learn. It involves solving simple systems of equations by understanding

a little about number theory. This method, along with the next one, require a great deal of number

sense with respect to divisibility, multiplication of (sometimes large) numbers, and factors of

commonly seen numbers.

Let’s try and derive the ideas we will need in this section. Given two roots of a polynomial,

λ1 and λ2, we know that the quadratic must be in the form

(x+ λ1)(x+ λ2) = x2 + (λ1 + λ2)x+ λ1λ2.

That means, we know that we have a system of equations here. If f(x) = x2 + bx+ c (assuming

a = 1), we know that λ1 + λ2 = b and λ1λ2 = c. To factor the quadratic, we need to solve for

λ1 and λ2. We aren’t going to find a solution in terms of b and c; instead we will find a solution

case-by-case.

Let’s try a few examples to get the hang of this idea.

Example 5.23: Factor x2 − 13x+ 36 = 0.

Solution: We know that λ1 + λ2 = −13 and λ1λ− 2 = 36. Because λ1λ2 > 0, λ1 and λ2 have

the same sign, and since λ1 + λ2 < 0, we know that λ1 and λ2 are both negative.

Consider the factors of 36. We have (1, 36), (2, 18), (3, 12), (4, 9), and (6, 6). The (4, 9)

pair is the only pair that adds to 13, so our factors are (x− 4)(x− 9). �

Example 5.24: Find the roots of x2 − 12x− 540 = 0.

Solution: The numbers just got much bigger. We know that λ1λ2 = −540 and λ1 + λ2 = −12.

Since λ1λ2 < 0, we know that λ1 and λ2 have different signs. Since λ1 + λ2 < 0, the larger

number must be negative. Since 540 has 12 pairs of factors, and we don’t want to go through all
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these factors, we will find an alternate solution.

Let’s determine if λ1 and λ2 have any common factors. We first note that 12, 540, and 0 are

all even. If x is odd, then the quadratic is odd and thus can’t equal zero (be sure to check this for

yourself). This means that the roots are even.

We also note that 12, 540, and 0 are divisible by three. Using the same logic as the previous

paragraph, we know that the roots must be divisible by 3.

Using basic divisibility rules, we know that the roots must be divisible by 6 as well. We

then define new roots, µ1 and µ2, such that 6µ1 = λ1 and 6µ2 = λ2. This means that

6µ1 + 6µ2 = −12, so µ1 + µ2 = −2. Also, (6µ1) (6µ2) = −540, so µ1µ2 = −15. This is

much easier to solve. We quickly see that µ1 = −5 and µ2 = 3, meaning that λ1 = −30 and

λ2 = 18. Thus, our factors are

x2 − 12x− 540 = (x+ 18)(x− 30) = 0,

meaning that x1 = −18 and x2 = 30. �

Up until now, we’ve only dealt with cases where a = 1. What if a 6= 1? Can we write the

same equations? The short answer is: no. Let’s look at an example where this applies.

Example 5.25: Factor 3x2 + 11x+ 10 = 0.

Solution: In this case, a = 3. This problem is slightly easier since 3 is prime; it means there’s

only one pair that works: 3x · x = 3x2. This means we write the factors as (3x+ λ1)(x+ λ2).

FOILing this gives

(3x+ λ1)(x+ λ2) = 3x2 + (λ1 + 3λ2)x+ λ1λ2.

So, we need to find values for λ1 and λ2 that satisfy λ1 + 3λ2 = 11 and λ1λ2 = 10. The factor

pairs of 10 are (1, 10), (2, 5), (5, 2), and (10, 1). Unlike Example 5.20, the order does matter

here because of the different coefficients on x. The only factor pair that works here is (5, 2),

meaning 3x2 + 11x+ 10 = (x+ 5)(x+ 2). �

Now, what if a isn’t prime? This means we need to introduce two new variables into the

equation.

Example 5.26: Factor 9x2 + 88x− 20 = 0.

Solution: In this case, a = 9 has three factor pairs ((1, 9), (3, 3), and (9, 1)). So, we introduce two

new variables µ1 and µ2 to represent that coefficient. Thus, the factors are (µ1x+λ1)(µ2x+λ2).

This expands to

(µ1x+ λ1)(µ2x+ λ2) = (µ1µ2)x
2 + (µ1λ2 + µ2λ1)x+ λ1λ2.

This gives the system of equations µ1µ2 = 9, µ1λ2 + µ2λ1 = 88, and λ1λ2 = −20. But wait!

This is a four variable, three equation system. This isn’t possible! There is a fourth restriction

though - each variable must be an integer.

Let’s consider this solution logically. 88 is a very big positive number. λ1λ2 < 0, meaning

that either λ1 or λ2 is negative. We quickly deduce that λ1 must be a (small) negative number.

We know that both µ1 and µ2 must be positive for this to work, and must have a significant size
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difference. Let µ1 = 9 and µ2 = 1. This means that 9λ2 + λ1 = 88. The only solution that

works here is λ1 = −2 and λ2 = 10.

Thus, our factors are (9x− 2)(x+ 10). �

These are the different types of coefficient factoring. Let’s move on to intuitive factoring, a

more mental solution that combines the last two methods.

5.5.3 Intuitive Factoring

This section is undoubtedly the hardest to teach, the hardest to learn, the one that requires the

most practice, yet the most rewarding. Once you understand how to use it, you will be factoring

at lightning speeds with amazing accuracy. Essentially, this method is the previous one without

showing as much work nor thinking as hard.

This method is more like the first method as it looks for the numbers that multiply to the

constant and add to the linear term. However, this method can be used for larger values of a, b,

and c without too much difficulty.

Let’s try a few examples of this that cover various cases of intuitive factoring.

Example 5.27: Factor x2 − x− 12 = 0.

Solution: We need two numbers that multiply to −12 and add to −1. Instead of listing every

factor, let’s consider the solution intuitively. The numbers we need must have opposite sign and

the larger must be negative. We also know they are close in magnitude, since their sum is near

zero. So, we look for two factors near
√

12 ≈ 3.5 (be sure you know why!). The two factors that

work here are −4 and 3, so our factors are (x− 4)(x+ 3). �

Example 5.28: Factor x2 − 7x− 18 = 0.

Solution: We need two numbers that multiply to −18 and add to −7. We know that they must

be of opposite sign and should have a somewhat-large difference. We also know that the larger

number must be negative. Since the linear term is near half the constant term, we should look

for a root around 2 and the corresponding roots (in this case −9). We see that −9 and 2 works,

so the factors are (x− 9)(x+ 2) = 0.�

Let’s move on to a few examples where a 6= 1.

Example 5.29: Factor 2x2 − 17x+ 35 = 0.

Solution: The number are getting slowly bigger and now there’s a leading coefficient. Since 2 is

prime, the only way to use it is (2x+ λ1)(x+ λ2). Since 35 is positive, the numbers must have

the same (negative) sign. Again, since the difference between the coefficients of x is low, and

since the linear term is about half the constant term, the constants will be approximately equal.

The smaller of the two constants will usually be multiplied by the higher x-coefficient. We pick

−5 and −7 as the factors of 35 and note that (2)(−5) + (1)(−7) = −17. When you multiply

these terms, according to FOIL, we put them in the opposite factor. So, the factors become

(2x− 7)(x− 5) = 0. �
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Remark: This problem can also be solved by bringing 2 to the back and factoring as usual. We

will do this in the next example.

This last one was probably tough to follow. Again, this method is not easy. But once you

understand a bit of the number theory behind it, it becomes a lot easier.

Let’s try one where a isn’t prime.

Example 5.30: Factor 6x2 + 11x− 10.

Solution: Since a isn’t prime, and there’s not a good way to deal with this, we bring it to the back.

This gives x2 + 11x− 60 = 0. Since the middle term is approximately a quarter of the constant

term, we try the roots 15 and −4. They work! This gives the factors (x+ 15)(x− 4) = 0. We

then divide the constants by 6 to get

(x+ 15)(x− 4) =⇒
(
x+

5

2

)(
x− 2

3

)
=⇒ (2x+ 5)(3x− 2) = 0.

�

These are the essentials of intuitive factoring. Continue to practice it as we move on to

hidden quadratics, where we find secret quadratics inside of seemingly impossible functions.

5.6 Hidden Quadratics

The goal of this section is to learn to factor "hidden" quadratics. Hidden quadratics are quadratic

functions where the x-variable is some other function, such as an exponential, trigonometric, or

other. All we need to do is make a substitution to make the quadratic into a function we know

how to factor and solve it.

Let’s look at a few examples to understand how to solve it.

Example 5.31: Solve (3x)2 − 12 (3x) + 27 = 0.

Solution: We see that we almost have a quadratic if it weren’t for the 3x terms. So, we make

what’s known as a u-substitution. In this case, we let u = 3x. Why? This will help us to remove

both 3x terms and leave a quadratic!

(3x)2 − 12 (3x) + 27 = 0 =⇒ u2 − 12u+ 27 = 0.

We know how to solve the resultant equation. Let’s factor it.

u2 − 12u+ 27 = u2 − 3u− 9u+ 27 = u(u− 3)− 9(u− 3) = (u− 3)(u− 9) = 0.

Using the zero-product property, we know that u = 3 and u = 9. But we’re not done! Recall

that the original equation was in terms of x, not u. This means that we have to re-substitute the

value of u for 3x to solve for x. This means that we have 3x = 3 and 3x = 9, which we know is

x1 = 1 and x2 = 2. �

The important part of this section is ensuring that you re-substitute the value of u for x. In

the next example, we are going to factor the quadratic without making the substitution.

Example 5.32: Solve 3 (3x)2 − 4 (3x) + 1 = 0.

Solution: Without making the substitution, we need to factor. We only are going to consider
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the coefficients as it’s a hidden quadratic in standard form. Remembering the second type of

factoring we learned, where we move the leading coefficient "to the back", we get the factors to

be (3 · 3x − 1) (3x − 1) = 0. This means that 3x =
1

3
and 3x = 1. Thus, x1 = −1 and x2 = 0.

�

The last type of problem we need to cover is if one of the resultant solutions doesn’t exist.

This may happen due to domain and range restrictions on the u-function.

Example 5.33: Solve (3x)2 − 9 (3x)− 22 = 0. You may use a scientific calculator; round your

answer to two digits.

Solution: Let u = 3x. This means that u2− 9u− 22 = 0. Factoring gives (u− 11)(u+ 2) = 0,

meaning u1 = −2 and u2 = 11. Re-substituting, we get 3x = −2 and 3x = 11. Since 3x 6= −2

since the range of f(x) = 3x is y > 0. This leaves 3x = 11. We don’t have a great way of

solving this. Using some trial and error to find a close answer, we get x = 2.18. �

Note that we used 3x for every problem. There are an infinite number of values for u that

will be used, but without covering other types of functions, it’s hard to have a variety. A bit more

variety is put in the problem sets.

Those are the three main types of hidden quadratic expressions. Now, let’s move on to a

new method of conversion: completing the square (converting from standard to vertex form).

5.7 Completing the Square

The next method of solving quadratic equations is to complete the square. The goal of this

method is to "factor" it in such a way that x is only in one term. The achieved form of this

quadratic is known as the vertex form. Thus, our goal is to change the form of the quadratic from

a1x
2 + a2x+a3 −→ a(x+ x0)

2 + y0.

We are going to attempt to derive this in terms of generic constants (a1, a2, and a3). The first

thing we need to do is separate the x terms by factoring out an a1 from only the first two terms,

thus:

a1x
2 + a2x+ a3 = a1

(
x2 +

a2
a1
x

)
+ a3.

Now, we need to find a way to make the polynomial inside the parentheses to a perfect square.

We know that the perfect square of a monomial is in the form

(x+m)2 = x2 + (2m)x+m2.

Thus, to findm2, we need to divide the middle term by two and square it.

Our middle term is
a2
a1

. Following the process explained above, we get that the last term is

a2
a1

=⇒ a2
2a1

=⇒ a22
4a21

. So we must add this to the inside to get the perfect square polynomial;

however, what we do to one side, we must do to another. To ensure that the equation is balanced,

we will subtract this value outside the parentheses. Note that the parentheses is being multiplied
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by a1, so we must account for that outside:

a1

(
x2 +

a2
a1
x+

a22
4a21

)
+ a3 − (a1)

(
a2

4a21

)
= a1

(
x2 +

a2
a1
x+

a22
4a21

)
+

(
a3 −

a22
4a1

)
.

All we need to do is write the inside as a perfect square. This isn’t too difficult:

y(x) = a1

(
x+

a2
2a1

)2

+

(
a3 −

a22
4a1

)
In this form, x0 =

a2
2a1

and y0 = a3 −
a22
4a1

. Note the following remark:

Remark: Do NOT memorize this formula. There is no benefit to doing this. Work out each

problem individually and understand the process.

There are two important applications for completing the square: (1) for solving a quadratic

equation, and (2) for graphing a quadratic function. We will cover graphing in Section 5.9. Let’s

look at a few examples to demonstrate mastery of the process:

Example 5.34: Write the following in vertex form: y(x) = x2 + 3x+ 1.

Solution: There is nothing to factor out of the first two terms. The term that needs to be

added/subtracted is
(

3

2

)2

=
9

4
. We get the vertex form of the polynomial as

y(x) =

(
x2 + 3x+

9

4

)
+ 1− (1)

(
9

4

)
=

(
x+

3

2

)2

− 5

4
.

�

Example 5.35: Solve the following quadratic equation via completing the square: x2+4x−5 =

0.

Solution: Since there’s nothing to factor, we find the added term to be
(

4

2

)2

= 4. This makes

the completed square (
x2 + 4x+ 4

)
− 5− 4 = (x+ 2)2 − 9 = 0.

All we need to do is solve it for x, which is fairly easy. Adding 9 to both sides, we get (x+2)2 = 9.

Taking the square root of both sides gives x+ 2 = −3 and x+ 2 = 3, meaning that x = −5 and

x = 1.�

Now, let’s move on to the final method of solving a quadratic equation: the quadratic formula.

5.8 The Quadratic Formula

After covering all the other factoring types, we arrive at the final types of quadratics: the ones

that can’t be factored. As a result, we are tasked to find a formula that can solve the quadratic

for x given any coefficients of the polynomial. We will consider the standard polynomial

y(x) = ax2 + bx+ c, where a, b, c ∈ R. We are going to solve for x by completing the square;

we did a very similar derivation in Section 5.7, so we won’t do too much explaining. Let’s

complete the square:

y(x) = ax2 + bx+ c = a

(
x2 +

b

a
x

)
+ c = a

(
x2 +

b

a
x+

b2

4a2

)
+ c− b2

4a
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We will combine the constant terms into a singular fraction. Remember that, since we are trying

to find the roots of the polynomial, we need to let y(x) = 0.

0 = a

(
x+

b

2a

)2

+
4ac− b2

4a
=⇒ a

(
x+

b

2a

)2

=
b2 − 4ac

4a
=⇒

(
x+

b

2a

)2

=
b2 − 4ac

4a2

We need to take the square root of both sides. Remember that both roots - not just the principal

root - are important. We will denote both roots using a "±". Note that you could use an absolute
value; however, the final formula looks a little cleaner and is more well-known this way.

x+
b

2a
=
±
√
b2 − 4ac

2a
=⇒ x =

−b±
√
b2 − 4ac

2a

There it is. That’s the quadratic formula. Sure, it’s not the prettiest formula in the world. Let’s

emphasize it in the definition below.

Definition 5.3. The Quadratic Formula

♣

Given a quadratic polynomial y(x) = ax2 + bx + c, where a, b, c ∈ R and a 6= 0, the

roots of the polynomial can be expressed as

x =
−b±

√
b2 − 4ac

2a
.

The value inside the square root, known as the discriminant, determines the classifications

of solutions.

Remark: Unlike the complete the square formula, this is an essential formula to memorize.

The more you use it, the easier it gets to memorize!

There are three categories of the discriminant (symbol: ∆): When ∆ > 0, ∆ = 0, and

∆ < 0. Now, let’s consider each type:

1. If ∆ > 0, this means that the square root will be a real value; due to the ±, there will be
two distinct real solutions.

2. If ∆ = 0, this means that the square root will be zero, nullifying the ±. This yields one
repeated real solution.

3. If ∆ < 0, this means that the square root will be negative, giving two complex conjugate
solutions.

Let’s consider an example of each type:

Example 5.36: Solve the following quadratic equation: 2x2 + x− 28 = 0.

Solution: Since a = 2, b = 1, and c = −28, we get

x =
−(1)±

√
(1)2 − 4(2)(−28)

2(2)
=
−1±

√
225

4
=
−1± 15

2
=⇒

x1 = −8

x2 = 7
.

�

Example 5.37: Solve the following quadratic equation: x2 − 8x+ 16 = 0.

Solution: Since a = 1, b = −8, and c = 16, we get

x =
−(−8)±

√
(−8)2 − 4(1)(16)

2(1)
=

8± 0

2
=⇒ x1,2 = 4.

�
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Example 5.38: Solve the following quadratic equation: x2 + 2x+ 4 = 0.

Solution:

x =
−(2)±

√
(2)2 − 4(1)(4)

2(1)
=
−2±

√
−12

2
=
−2± 2i

√
3

2
=⇒

x1 = −1− i
√

3

x2 = −1 + i
√

3
.

�

There isn’t much else to cover regarding the quadratic formula. It’s super straight-forward and

there’s no other variability to it. Now, let’s discuss the final, and possibly the most important,

section of the chapter: graphing quadratics.

5.9 Summary of Quadratics

This section plans to cover no new material; the goal of this section is to bring all the

information from this chapter together to ensure that you got everything out of the chapter that

you will need.

The big piece of information to take away from this section is the method to convert between

forms. The next three paragraphs explain the basic process (and/or name) to convert between

each form.

Let’s start with standard form. To get from standard form to vertex form, you complete the

square (5.7). To get to factored form, you simply factor (5.5).

Then, we move to vertex form. To get to standard form, distribute the squared term

and combine the constants. To get to factored form, you can use difference of squares (5.6).

Otherwise, convert to standard form and factor.

Last, we look at factored form. To get to standard form, FOIL the factors. To get to vertex

form, take the average of the intercepts to get the x-coordinate of the vertex, then just find the

y-coordinate from there. Sometimes, it might be easier to go to standard form then complete the

square.

Note that its often easier to go to standard form first to get between vertex form and factored

form. Sometimes it might be easier to go straight between them, but using standard form is

always an option.

K Chapter 5 Review Problemsk

1. Find the domain of f(x) =
x− 7

1

x
+

1

x2 + 6

.

2. For the following equations, solve for x.

(a) x2 + 12x+ 27 = 0 (b) x2 − 6x+ 1 = 0

(c) 2x2 − 5x+ 2 = 0 (d) 3x2 = 7− 15x

3. Let f be defined such that f(x/2) = x2 + x+ 1. Find the sum of the values of s such that

f(2s) = 7.
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4. Given that one root of 2x2 + rx+ s = 0, with r and s as real numbers, is 3 + 2i. Find s.

5. For each problem, graph the quadratic by completing the square.

(a) f(x) = x2 + 6x+ 13 (b) g(x) = 3x2 − 6x+ 5

(c) h(x) = 2x2 + 8x+ 6 (d) j(x) = 3x2 + x− 1

6. The sum of the squares of the roots of x2 + 2hx− 3 = 0 is 10. Find |h|.

7. Given the pieces of information below, write a quadratic function. Then, convert it into all

forms.

(a) A quadratic with vertex at (2, 3) and a y-intercept of (0, 1).

(b) A standard quadratic with roots at x = −4 and x = 1.

(c) An inverted quadratic with y-intercept at (0, 2), compression factor of |a| =
1

2
, and

contains (5, 2). [?]

8. Find the roots of x2 +

(
a− 1

a

)
x− 1 = 0 in terms of a.

K Chapter 5 Challenge Problemsk

1. Let a and b be the roots of the equation x2−mx+2 = 0. Suppose that a+
1

b
and b+

1

a
are

the roots of the equation x2 − px+ q = 0. What is q? (IMPORTANT: For a polynomial

ax2 + bx+ c = 0 with real constants a, b, and c, then the product of the roots is
c

a
.)

2. One of the roots of x2− ax+ 2a+ 3 = 0 is three times the other. Find all possible values

of a. (IMPORTANT: For a polynomial ax2 + bx+ c = 0 with real constants a, b, and c,

then the sum of the roots is − b
a
.)

3. Find the positive difference of the roots of x2 − rx+
r2 − 1

4
= 0.

4. Solve
√

4x2 + 20x+ 25 = 2x+ 5.

5. Solve 4x + 2x+2 − 32 = 0 for x.

6. Find all values of x such that
(
x2 − 5x+ 5

)(x2−9x+20)
= 1.

7. Find all ordered pairs (x, y) that satisfy both x2 − xy = 10 and xy + y2 = 6. (HINT: try

to combine them in some way; what comes of it?)

8. Let P (x) be a polynomial such that P (0) = −1, P (1) = 9, and P (2) = 25. Find P (−1).

Remark: The two notes given in Problems 1 and 2 of the challenge set are a part of a series of

formulas known as Vieta’s Formulas. They will be covered in Pre-calculus.
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A polynomial is an expression in the form

P (x) = a0 + a1x+ a2x
2 + a3x

3 + . . .+ anx
n

for some real constants a1,a2,a3,. . .,an. We define polynomials by their degree, which is

considered to be the highest power of the polynomial (for example, a quadratic has degree 2).

We then can name the polynomial based on its degree; a polynomial of the third degree is

considered a cubic, a fourth-degree polynomial is a quartic, and so on. These first few names are

important to be able to identify; after that, we simply use the degree number (i.e seventh-degree

polynomial).

The goal of this chapter is to extend the theory of quadratic functions into higher-orders

(degrees) and determine various properties associated with them. Our goal is to see how similar

polynomials of different degrees are and how we can predict behavior based on certain aspects

of the function.

6.1 Basic Theory of Higher-Order Polynomials

To begin our discussion of higher order polynomials, we will delve into the various theories that

surround them. Now you may be wondering, why are these polynomials different from a normal

quadratic or a line? Well, the reason for this is because unlike quadratics or lines, there isn’t

exactly a guaranteed way to solve for zeros, nor an "easy" way to graph them precisely. We need

to consider a few things about polynomials to help us better understand them and graph them.

We begin with degree. The definition of a degree was explained in the introduction to the

chapter. The numeric value of the degree is important, but so is whether it is even or odd. Below

are the two rules:

If the degree of the polynomial is even, the end behavior is even. This means that as

x→ −∞ and asx→∞, theywill travel in the same direction. The direction is determined

by the sign of the leading coefficient (an): if an < 0, the shape of the polynomial will go

both down (f(x)→ −∞); if an > 0, both ends will go up (f(x)→∞).



6.1 Basic Theory of Higher-Order Polynomials – 62 –

If the degree of the polynomial is odd, the end behavior is odd. Thismeans that asx→ −∞
and as x→∞, they will travel in opposite directions. Again, the direction is determined

by the sign of the leading coefficient (an): if an < 0, the left side (f(−∞) → ∞ and

f(∞)→ −∞); if an > 0, both ends will go up (f(−∞)→ −∞ and f(∞)→∞).

The next thing we need to understand are extrema. Polynomials can have turns in the graph −
there can be n − 1 turns (where n is the degree). This means that quadratics can have up to 1

turn (they all do), cubics can have 2, and so on. There are two types of extrema: local extrema

and global extrema. Let’s explore the difference:

Local extrema are the maximum and minimum of a function in a given interval. For

example, many cubic graphs have two turns as seen below. The local maximum is at the

top of the left "crest" and the local minimum is at the bottom of the right "trough".

Global extrema are the highest and lowest points of a function over its entire domain. For

example, on the cubic graph below, we see that the global maximum is∞ and the global

minimum is −∞.

x

f(x)

x

f(x)

We should note that there’s not always n−1 turns in the graph. Consider the graph of f(x) = x4

above, where there is one turning point. So how do we know when there will be a turn? There’s

not a great method, but we will explore a good method when we discuss finding the roots of a

polynomial.

The final theorem to discuss is the Intermediate Value Theorem.

Theorem 6.1. The Intermediate Value Theorem

♥

Given a polynomial f(x) that is continuous on the interval (a, b), where a, b ∈ R and

a < b, and if f(a) < 0 and f(b) > 0 or vice-versa, then somewhere along this interval,

there exists some value of c where a < c < b such that f(c) = 0.

This theorem is really common sense of you think about it. If a function is below the x-axis

at some point, and further on down the line, it is above, somewhere in between the function

had to cross the x-axis, provided the function doesn’t have any asymptotes or holes or anything.

(This, of course, is true in reverse − starting above the x-axis.)

This concludes our discussion of theories regarding graphing. You may be wondering; this

wasn’t that bad? Well for starters, whenever math is easy, it has to get hard. And secondly, why
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did you jinx it?

6.2 Theory in Solving Higher-Order Polynomials, Part I

In this section, we’re going to delve into the theories of solving polynomial equations and

inequalities. Now a lingering question may remain from the last section: you showed me how to

graph this, but how do I actually figure out things about the function rather than guessing how it

looks? We’re now going to do just that.

Polynomial equations are often in the form k = a0 +a0 +a1x+a2x
2 +a3x

3 + . . .+anx
n.

We seek to solve functions in the form f(x) = 0, so we subtract.

0 = (a0−k)+a1x+a2x
2+a3x

3+ . . .+anx
n =⇒ 0 = a′0+a1x+a2x

2+a3x
3+ . . .+anx

n,

where a′0 = a0 − k. There are loads of methods to solve these, but in order to hone in on those

methods, we need to discuss any attributes of these zeroes first. First, we want to count how

many there are. Is there a general form for that?

Consider the polynomial 0 = 1 − x + x2 − x3. How many solutions should we expect?

Well, for a line we expect one solution. For a quadratic, it has two solutions. If we extrapolate

this to the nth degree, we make the following conjecture: A polynomial of degree n has n roots.

This is actually known as the Fundamental Theorem of Algebra. It’s pretty common sense, we

know. We even put it in a box because it’s important.

Theorem 6.2. Fundamental Theorem of Algebra

♥A polynomial of degree n has n roots.

Remark: Side note, most fundamental theorems are common sense. Here’s another (called the

Trivial Inequality): x2 ≥ 0.

There’s more we can tell about the roots. Descartes, a renown mathematician and philoso-

pher, created a rule to outline expectations we have for the solutions to the equation.

Theorem 6.3. Descartes’ Rule of Signs
Descartes’ Rule of Signs predicts how many solutions will be positive, how many will be

negative, how many might be real, etc.

1. For some polynomial f(x), count the number of sign changes.

If the number of sign changes is odd, then there is at least 1 positive real

solution.

If the number of sign changes is even, then there is at least 0 positive real

solutions.

2. For the polynomial f(−x), count the number of sign changes.

If the number of sign changes is odd, then there is at least 1 negative real

solution.
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♥

If the number of sign changes is even, then there is at least 0 negative real

solutions.

This will be useful for predicting what roots a polynomial has.

Remark: Remember that complex roots come in pairs. This means that if there is one positive

real solution for a cubic, and no negatives, then the other two must be complex conjugate roots.

Why is there an "at least"? ”. Well remember above, Descartes’ Rule of Signs gives us

expectations, so we cannot know for sure how many. Let’s apply it on the example above:

f(x) = 1− x+ x2 − x3.
There are three sign changes, meaning that there is at least 1 positive real root (but there

could be up to 3). Finding f(−x), we get that f(−x) = 1 + x + x2 + x3, which has no sign

changes. This means that there are no negative real solutions. Note that this result means there

can’t be 2 positive roots since the complex roots must come in pairs.

Summing up the two options, f(x) could have:

1. 1 positive real root and 2 complex conjugate roots, or

2. 3 positive real roots.

So how do we actually figure out what the roots are? Well there are many strategies for this, and

they will be broken up into many sections. But before we close, let’s speak about he importance

of Descartes’ Rules of Signs and the Fundamental Theorem of Algebra.

For starters, the Fundamental Theorem of Algebra is important because I should let us know

how many solutions we have after going through the solving process. So, if we don’t have that

many solutions, we did something wrong.

Secondly, Descartes’ Rule of Signs may seem unnecessary upon seeing how to solve these

in the following sections, but when we get to the process of synthetic division and Rational Root

Theorem, Descartes’ Rule of Signs may lower the number of numbers we have to test in each.

These processes may seem like words for now, but in the next few sections we’ll see how they

can be implemented to solve polynomial equations.

6.3 Theories in Solving Higher-Order Polynomials, Part II

We’ve been dancing around the bush for two lessons now, how do we actually solve these

equations? Well to start, let’s begin with the Rational Root Theorem.

Theorem 6.4. The Rational Root Theorem

♥

Given a polynomial equation of the form 0 = a0 +a1x+a2x
2 + . . .+an−1x

n−1 +anx
n,

the possible real roots are in the form x = ±p
q
, where p is the set of integral facots of |a0|

and q is the set of integral factors of |an|.

Let’s put this to the test.
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Example 6.1: Use the rational root theorem to find the possible real roots of 0 = x5 + 2x4 +

3x3 − 5x2 + 5x− 6.

Solution: Using the rational root theorem, we know the important values are a0 = −6 and

a5 = 1. The factors of 6 are 1, 2, 3, 6 and the factors of 1 are just 1. So,

x = ±p
q

= ±1, 2, 3, 6

1
= ±1,±2,±3,±6.

�

Now that we know which ones could be the roots, how do we go about figuring out which

ones of our narrowed list are the roots? You plug them in.

You might be thinking: that’s a lot of work! In this case, that’s 8 roots and some high-valued

numbers. Well, we can get around this using Synthetic Division. If you don’t remember how to

do this, refer to Section 7.3 on how to do long division and synthetic division.

Remark: Although this section is further ahead where you are now, note that it requires no

knowledge from Section 7.1 and Section 7.2 to read this section. If you need a refresh, please go

there.

I shall continue on assuming you’ve done a refresh on long division and synthetic division,

if necessary. Let’s say we wanted to divide
x2 − 3x+ 2

x− 1
. Here are the steps for long division:

x− 2

x− 1
)

x2 − 3x+ 2

− x2 + x

− 2x+ 2

2x− 2

0

Here are the steps for synthetic division:

1 − 3 2

1 1 − 2

1 − 2 0

Either way, when we divide these, we get x− 2 with no remainder. If we did
x2 − 3x+ 3

x+ 1
,

we get

1 − 3 3

− 1 − 1 4

1 − 4 7

which translates to x− 4 + 7
x+1 . Not too bad.

Now, let’s go over the the general process. Suppose Q(x) represents the quotient of the

divisionD(x), the dividend, and d(x), the divisor. Assuming this divides perfectly, as in there’s
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no remainder, we would have
D(x)

d(x)
= Q(x).

But if there is a remainder, our function turns into this (where R(x) is the remainder function):
D(x)

d(x)
= Q(x) +R(x).

We know that R(x) =
r(x)

d(x)
, where r(x) is the remainder. Solving for D(x), we get D(x) =

Q(x)d(x) + r(x). If there exists some value c such that d(c) = 0, the D(c) = r(c).

If we apply this to the function above, we get
x2 − 3x+ 2

x− 1
= x− 2 +

0

x− 1
.

If we follow the steps above for the general case, we get

x2 − 3x+ 2 =

(
(x− 2) +

0

x− 1

)
(x− 1) =⇒ x2 − 3x+ 2 = (x− 2)(x− 1).

If we plug in x = 1, we get D(1) = 0.We could even do this if there’s a remainder:
x2 − 3x+ 3

x+ 1
= x− 4 +

7

x+ 1
=⇒ x2 − 3x+ 3 = (x− 4)(x+ 1) + 7.

Plugging in x = 3, we get that f(3) = 2. This means that whenever we plug in a value, we

get the remainder when you divide by the corresponding root! This is called the Remainder

Theorem.

Theorem 6.5. Remainder Theorem

♥

Suppose a given function p(x) is divided by x − a, where a ∈ R. The quotient can be

expressed as:
p(x)

x− a
= Q(x) +

r

x− a
,

given r ∈ R. Rearranging and plugging in x = a, we obtain p(a) = r(a), meaning
p(x)

x− a
= p(a).

Check out an example.

Example 6.2: Evaluate f(x) = x4 − x3 − x2 − x− 1 at x = 6.

Solution: Using synthetic division, we get
1 − 1 − 1 − 1 − 1

6 6 30 174 1038

1 5 29 173 1037

Using this, we see that f(6) = 1037. �

We have one final trick to determine zeroes, and it’s quite related to Descartes’ Rule of

Signs. It’s called the Boundness Theorem.
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Theorem 6.6. The Boundness Theorem

♥

Given a polynomial function f(x) and some real constant c,

If you synthetically divide f(x) by x− c, and all the signs in the resulting division

are positive, then that value c represents the upper bound to the real roots of f(x).

If you synthetically divide f(x) by x + c,and all the signs in the resulting division

alternate, then c represents the lower bound to the real roots of f(x).

With these inmind, we can go back to finding the roots of 0 = x5+2x4+3x3−5x2+5x−6.

We know the potential roots to be ±1,±2,±3,±6. Using Descartes’ Rule of Signs, we find

that there’s either 0 or 2 positive roots and 0 or 2 negative roots. Not too helpful. Let’s start by

making a good guess and moving from there. A good starting guess is x = 1 (then x = −1 if it

fails); we find that x = 1 works. Doing the synthetic division, we get

1 2 3 − 5 5 − 6

1 1 3 6 1 6

1 3 6 1 6 0

This leaves us with the resultant polynomial x4 + 3x3 + 6x2 + x+ 6 and now have to find

another root. Using Descartes’ rule of signs again, we see that there are no positive roots and

0, 2, or 4 negative roots. Before we starting checking all the roots, we can notice that there are

all positice signs, meaning there is a very small chance this graph actually touches the x-axis (it

doesn’t!). This means that all the roots are imaginary, and we can use a graphing calculator for

this (if you don’t know how, consult Section 15.4 on how to do this). We get the roots to be

x1 = 1 x2,3 = −1.679± 1.849i x4,5 = 0.179± 0.964i.

We did it! We found the roots of a polynomial! We have 5 solutions, so we satisfied the

Fundamental Theorem of Algebra, and that is it. We have finally gotten through all of this.

Now you may be asking yourself, do we need to use the Rational Root Theorem all of the time?

Not necessarily, and in the next section, we will cover some special cases of (specifically cubic)

functions where we can avoid using it.

6.4 The Special Cases

Our goal is to go through some special cases that will allow us to skip the rational root theorem

process.

6.4.1 Sum and Difference of Cubes

This is the first and most common type you will see. This requires a very specific form to use

but does a good job in skipping steps.

Given a function in the form a3±b3, where a and b are functions of the independent variable,
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we can factor into the following:

a3 + b3 = (a+ b)(a2 − ab+ b2),

a3 − b3 = (a+ b)(a2 + ab+ b2).

This seems hard to memorize. Are there any tricks? Yes! The important thing to memorize are

the signs, for which we have an acronym: SOAP.

SOAP stands for Same, Opposite, Always Positive, and tells us how to mark the signs given

the original sign. This will come in handy and will be referenced frequently throughout factoring.

To memorize the terms, we can note that the second term is almost like a perfect square.

It’s just missing the 2!

A helpful hint is that the second term doesn’t factor again 99% of the time. We couldn’t

think of a time when it did, but we didn’t want to leave any unproven certainties.

Here come the examples.

Example 6.3: Factor completely: f(x) = x3 − 64.

Solution: Here, we see that a = x and b = 4 and we need to use difference of cubes. Following

SOAP, we know that we have a3 + b3 = (a+ b)(a2 − ab+ b2). Plugging in values, we get

x3 + 64 = (x+ 4)(x2 − 4x+ 16).

The second term does not factor, so we are done. �

Example 6.4: Factor completely: x6 + 729.

Solution: Here, we see that the two cubes are x2 and 9. Using sum of cubes, we have

a3 − b3 = (a− b)(a2 + ab+ b2). Plugging in, we get

x6 − 729 = (x2 − 9)(x4 + 9x2 + 81).

x2 − 9 does factor again, so the complete factorization is

x6 − 729 = (x+ 3)(x− 3)(x4 + 9x2 + 81).

�

Example 6.5: Factor completely: x3 − 4.

Solution: You probably immediately noticed that 4 is not a perfect cube. So what cubed makes

4? 3
√

4 does! So, we use this instead. Factoring, we get

x3 − 4 = (x− 3
√

4)(x2 +
3
√

4x+
3
√

16).

We simplify the constant in the second term to get

x3 − 4 = (x− 3
√

4)(x2 +
3
√

4x+ 2
3
√

2).

�

These don’t get harder than this, so we move on.

6.4.2 Factoring by Grouping

We’ve already done factoring by grouping before in Chapter 5, but we will review it again and

try to extend it to higher-order.
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The idea behind factoring by grouping is to split the polynomial in two parts (usually the

highest degrees and the lowest degrees) such that each part can be factored (a common factor

can be pulled out). To do this, there’s two types of cases we have to consider:

If the number of terms is even, there’s nothing we have to do. We just need to separate the

two halves.

If the number of terms is odd, we need to split the middle term to make an even number of

terms. We need to split it such that both sides factor. This is not always possible.

Let’s look at some examples.

Example 6.6: Factor completely: f(x) = x4 − x3 − x+ 1.

Solution: We split the first two terms from the last two terms and factor the greatest common

factor.

f(x) = x4 − x3 − x+ 1 = x3(x− 1)− 1(x− 1).

Then, of the two terms, we can factor out the (x− 1) term to get f(x) = (x− 1)(x3 − 1). Now,

using the difference of cubes, we get

f(x) = (x− 1)2(x2 + x+ 1).

�

That wasn’t too bad. But what about the second case? Well that’s not so easy to see.

Example 6.7: Factor completely: f(x) = x4 − x3 − 7x2 + x+ 6.

Solution: This time, we need to split the middle term. We see that on the left side, we have

coefficients of 1 and−1. On the right side, our coefficients are 1 and 6. The secret is in matching

the second and second-to-last terms. Knowing that we can’t factor anything from the left side

(since the leading coefficient is 1), we need to strategically make the right side factorable. We

know that to match these two terms, we need a factor of −1. If we split −7x2 = −6x2 − x2, we
get two factorable terms:

f(x) = (x4−x3−6x2)+(−x2+x+6) = x2(x2−x−6)−1(x2−x−6) = (x2−1)(x2−x−6).

Now, we simply factor the quadratics as normal:

f(x) = (x− 3)(x− 1)(x+ 1)(x+ 2).

�

Okay, we’ve factored the polynomial. Now, we need to find the roots. We already know

how to do this, we just need to do it. There will also be one more vocabulary term we need to

discuss that will greatly help us in the next section and in Chapter 15.

Example 6.8: Find the roots of the polynomial from Example 6.6: f(x) = x4 − x3 − x+ 1.

Solution: We’ve already factored the polynomial to (x−1)2(x2+x+1). We should be expecting

four roots − two from each factor. Using the quadratic formula on the second factor, we get

x =
−1±

√
(−1)2 − 4(1)(1)

2
=
−1± i

√
3

2
.
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This gives us two roots; the other two are x = 1. Summarizing below, we get that

x1,2 = 1 x3 = −1

2
− i
√

3

2
x4 = −1

2
+ i

√
3

2
.

�

Remark: Notice how we’ve labeled the roots by number to ensure we have the right number.

This is also useful in Differential Equations later on when finding solutions to problems.

If you don’t want to use the subscripts, or you want to make your work a bit more clear, you

could write that x = 1 has multiplicity 2. What does that mean? It means it counts as a root

twice. This has a graphical meaning that we will discuss shortly.

With this, we will look at one last case: the binomial theorem.

6.4.3 The Binomial Theorem

The Binomial Theorem is an advanced method of factoring and expanding polynomials that we

can use to greatly speed up our time in special cases. Don’t worry if you don’t understand what’s

happening in this section; it will be covered again in Pre-calculus more in depth.

Here is the official definition of the binomial theorem:

Theorem 6.7. The Binomial Theorem

♥

Given x and y and positive real constant n, we define the binomial theorem as

(x+ y)n =
n∑
k=0

(
n

k

)
xkyx−k.

So what does this mean? You’ve probably seen summations before, but what’s the stacked

term? Well it’s not a fraction. That’s what we call the "choose function" and it has its own

formula: (
n

k

)
=

n!

k!(n− k)!
,

where x! = x(x−1)(x−2) . . . (3)(2)(1).How can we use this? It’s primary use is for expanding

polynomials but you can use it to factor as well. We do have a nice trick though, called Pascal’s

Triangle. This may be a familiar term, and it tells us the coefficients (the "choose function"

values) that we need. Below is a depiction of the first seven rows of the triangle.

n = 0 1
n = 1 1 1
n = 2 1 2 1
n = 3 1 3 3 1
n = 4 1 4 6 4 1
n = 5 1 5 10 10 5 1
n = 6 1 6 15 20 15 6 1

We include the values of n for a reason. Those values of n are the exponents of the function
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to expand, and the line represents each of the coefficients. Let’s try to use this.

Example 6.9: Expand (x+ 1)3.

Solution: Looking to line n = 3, we see the coefficients are 1|3|3|1. So, we follow the binomial

theorem for each term:

(x+ 1)3 = 1(x)0(1)3 + 3(x)1(1)2 + 3(x)2(1)1 + 1(x)3(1)0 = 1 + 3x+ 3x2 + x3.

�

Example 6.10: Expand (x− 4)5.

Solution: At n = 5, the coefficients are 1|5|10|10|5|1. Then, we use the binomial theorem:

(x−4)3 = 1(x)0(−4)5+5(x)1(−4)4+10(x)2(−4)3+10(x)3(−4)2+5(x)4(−4)1+1(x)5(−4)0

= −1024 + 1280x− 640x2 + 160x3 − 20x4 + x5.

�

How do we find more rows on the triangle? Well, try to find a pattern between consecutive

rows. A number is always the sum of the two numbers above it. Notice this "mini-triangle"

between each set of terms within the triangle and see how to expand rows.

Can we use this to factor? Yes! If you see a polynomial in this form, you can immediately

factor it. It’s not common at all but it is possible.

With this, we conclude our study on special cases. Let’s bring this all together and discuss

the final section: graphing.

6.5 Graphing Polynomial Functions

We’ve made it to the end. This section is going to be very example-based because we find it

important for you to practice (plus, there’s not much more to teach). Before we begin, we need

to go back to multiplicity and understand the theory behind it.

To do this, let’s consider basic cases: f1(x) = x, f2(x) = x2, and f3(x) = x3. They all

have one intercept at (0, 0) and its multiplicity equals the order of the polynomial. Let’s look at

the graphs of each: Look at how the graph approaches the root from both sides.

x

f(x)

x

f(x)

x

f(x)

For the linear function (multiplicity= 1), it crosses through it.
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For the quadratic function (even multiplicity), it bounces over the root.

For the cubic function (odd multiplicity), it curves through the root.

These are vital for understanding how to graph the next functions. How should we graph them?

Here’s a list of steps that you should follow:

1. Find the y-intercept,

2. Determine the end behavior,

3. Find the x-intercepts,

4. Plot the intercepts and use the end behavior to graph.

x

f(x)

The hard part is Step 3, but the other steps are just as

important. Let’s get started.

Example 6.11: Graph f(x) = x5 − x3.
Solution: We first note that f(0) = 0, so the y-intercept

is (0, 0). The degree of the function is 5, and the leading

coefficient is positive, so we know that we have f(−∞) =

−∞ and f(∞) =∞. Now to find the x-intercepts.

0 = x5−x3 = x3(x2−1) = x3(x−1)(x+1) =⇒
x1 = −1

x2,3,4 = 0

x5 = 1

.

So x = −1 has multiplicity 1 (cross), x = 0 has multiplicity 3 (curve), and x = 1 has multiplicity

x

f(x)

1 (curve). Using this, we obtain the graph on the right. �

Example 6.12: Graph the function f(x) = −x4 − 2x3 +

3x2 + x− 1. (Note: graphing calculator required.)

Solution: Plugging in x = 0, we find that f(0) = −1, so

the y-intercept is (0,−1). The leading coefficient is negative

with an even degree, so f(−∞) = −∞ and f(∞) = ∞.

Now, it’s time to factor using synthetic division. We check

x = 1 and it works, which gives us

− 1 − 2 3 1 − 1

1 − 1 − 3 0 1

− 1 − 3 0 1 0

We can quickly find that x3 + 3x2 − 1 does not factor because the only rational roots are 1

and −1. This is where the graphing calculator comes into play. We find the other roots to be

x1 = −2.879 x2 = −0.653 x3 = 0.532.

Using this, we get the graph to the right. �

Let’s finish the chapter with one last question.

Example 6.13: Graph f(x) = −2x3 + 9x2 − 3x− 14.

Solution: We first find that f(0) = −14, so the y-intercept is (0,−14). Then, we have a negative
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leading coefficient with an odd degree, so f(−∞) = ∞ and f(∞) = −∞. Now to find the

intercepts. We check x = 1 and it works. We can use synthetic division to pull out this term and

x

f(x)

hope for a factorable quadratic leftover.

− 2 9 − 3 − 14

1 − 2 7 4

− 2 7 4 − 10

This leaves us with 2x2 +3x−14, which can be factored into

(2x+ 7)(x− 2). This means that our three roots are

x1 = −7

2
x2 = 1 x3 = 2.

We can see the graph to the right. �

With this final problem, we conclude our study of graph-

ing polynomials. This shouldn’t have been to difficult when

compared to the previous chapter, so these problems shouldn’t be terribly difficult. Since they

are longer, we put less problems. More problems will always be available if necessary through

other sources.

K Chapter 6 Review Problemsk

1. Find all solutions to x5 + 2x4 + 11x3 + 22x2 + 24x+ 48 = 0.

2. Use the boundness theorem to find the upper and lower bound for the zeroes of the function

f(x) = x4 − 8x2 + 14x2 + 8x− 15.

3. Find all solutions to x3 + 3x2 − 14x− 20 ≥ 0.

4. Graph the function f(x) = 3x4 − 2x3 − 10x2.

5. Find the remainder when 1 + x13 is divided by x− 1.

6. Graph f(x) = 5x3 + 16x2 + 13x+ 2.

K Chapter 6 Challenge Problemsk

1. Find the roots of f(x) = x5 − 4x4 + x3 + 10x2 − 4x− 8.

2. Find the roots of f(x) = 2x4 − 9x3 − 72x2 − 81x+ 21.

3. Answer the following parts.

(a) Consider the resultant Sum of Cubes quadratic after factoring a cubic in the form

(ax)2 + b2. Determine the complex pair of roots in terms of a and b.

(b) Repeat part (a) using the Difference of Cubes.

4. Find the remainder when the polynomial x81 + x49 + x25 + x9 + x is divided by x3 − x.
(HINT: Do not try to use long division! Think about the form of the remainder and use

the remainder theorem to set up a system of equations.)
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5. Find a polynomial f(x) of degree 5 such that f(x)− 1 is divisible by (x− 1)3 and f(x)

is divisible by x3.



Chapter 7 Rational Functions

Contents

h Rational Expressions & Manipula-

tion

h Complex Fractions

h Polynomial Division

h Rational Equations

h Rational Functions

h Graphing Rational Expressions

For the past several chapters we’ve been discussing functions and equations in which we ad-

d/multiply variables together - polynomials. These types of functions are relatively simple to

understand; however, we must move on to more complex functions. Now, we will study ra-

tional functions. As an example, instead of looking at say f(x) = x2 + 2x we may discuss

g(x) =
2

x+ 1
.

Rational functions hold many of the same properties as polynomial functions. This makes

sense when you consider the definition seen in Section 7.1. The denominator is the only factor

that has changed; we will see how to account for this throughout the chapter.

7.1 Rational Expressions & Manipulation

Before we get started, we need a more concrete definition of what a rational function is.

Definition 7.1. Definition of a Rational Function

♣

Given polynomial functions P1(x) and P2(x), where P2(x) 6= 0, we define rational

function R(x) such that

R(x) =
P1(x)

P2(x)
.

Let’s take a look at some examples of functions and determine whether or not they are

rational functions.

Example 7.1: Determine which of the following are rational functions.

(a) f(x) =
x+ 2

x2
(b) f(x) =

√
x+ 2

x
(c) f(x) =

2

x2 + 2x+ 1

(d) f(x) =
x(x+ 2)

x+ 2
(e) f(x) =

x+ 1
x

x+ 2
.

Solution: We take this one part at a time.

(a) Yes, because both x+ 2 and x2 are polynomials.

(b) No, because
√
x + 2 is not a polynomial. No manipulation will be able to achieve the

criteria of having a polynomial numerator and denominator.

(c) Yes, because 2 and x2 + 2x+ 1 are polynomials (yes, technically constant functions can
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be considered to be polynomials).

(d) Yes, because both x(x+ 2) and x+ 2 are polynomials.

(e) Yes, because
x+

1

x
x+ 2

=
x2 + 1

x2 + 2x
. If this is not at all obvious why this is true, don’t

worry, the next section will cover this specific type of rational functions. �

Now that we’ve got the hang of what rational functions are, we can move on to manipulating

them. Starting simple, let’s add and subtract rational functions. To understand the process

behind adding and subtracting these functions, let’s first observe how we add and subtract

rational numbers (a.k.a. fractions). For example, what process would you use to simplify
2

5
+

1

7
?

Well, we need a common denominator. So that we can later extrapolate to variables, we will use

the method in which we multiply the two denominators together. Thus, we know the common

denominator to be 5 · 7 = 35.

To get this as a denominator for each fraction, we must multiply each fraction by a "fancy

form of one". The first fraction will be multiplied by
7

7
and the second by

5

5
, this will achieve

our common denominator as detailed below.
2

5
+

1

7
=

(
2

5
· 1
)

+

(
1

7
+ 1

)
=

(
2

5
· 5

5

)
+

(
1

7
· 7

7

)
.

Now we can combine the fractions together by adding the numerators to get our final answer.(
14

35

)
+

(
5

35

)
=

14 + 5

35
=

19

35
.

Let’s repeat the same process, but this time with variables.

Example 7.2: Combine
a1
a2

+
b1
b2

into a single fraction.

Solution: Our first step is to find a common denominator. One method (in this case, the only

method) is to multiply the denominators together, leaving us with a2b2.

Now, we must make that common denominator in both fractions using the steps shown

below.
a1
a2

+
b1
b2

=
a1(b2)

a2(b2)
+
b1(a2)

b2(a2)
=
a1b2
a2b2

+
a2b1
a2b2

.

Finally, we add the fractions together to get
a1b2
a2b2

+
a2b1
a2b2

=
a1b2 + a2b1

a2b2
.

�

Example 7.3: Combine the following expressions into a single fraction:

(a)
1

x
+

1

x+ 2
(b)

y

x− 3
− xy

x+ 2
(c)

a

b
+
b

c
+
c

a
.

Solution: Again, we do these parts one at a time. Not much explanation is needed; it’s very

much the same process as before.

(a)
1

x
+

1

x+ 2
=

(x+ 2)

x(x+ 2)
+

(x)

x(x+ 2)
=

x+ 2

x(x+ 2)
+

x

x(x+ 2)
=

2x+ 2

x(x+ 2)
.

(b)
y

x− 3
− xy

x+ 2
=

y(x+ 2)

(x− 3)(x+ 2)
− xy(x− 3)

(x+ 2)(x− 3)
=
y(x+ 2)− xy(x− 3)

(x+ 2)(x− 3)
.

(c)
a

b
+
b

c
+
c

a
=
a(ac)

b(ac)
+
b(ab)

c(ab)
+
c(bc)

a(bc)
=
a2c+ ab2 + bc2

abc
. �
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Remark: If there are more than two fractions to be combined, a possible common denominator

is the result of multiplying all the denominators together.

From our experience, we understand that many of you will prefer to work with decimals

than fractions. Both decimal notation and fraction notation have their pros and cons. Decimals

are easy to manipulate when adding and subtracting; however, they can be tedious to deal with

when multiplying or dividing. At the same time, while fractions can be irritating when adding or

subtracting as seen through the problems above, the process of multiplying and dividing fractions

is far simpler.

The general method for multiplying fractions is as follows:
a1
a2
· b1
b2

=
a1a2
b1b2

.

Division is just like multiplication, but with one more step. This method is characterized by the

following acronym: KFC − Keep, Flip, Change.
a1
a2
÷ b1
b2

=
a1
a2
· b2
b1

=
a1b2
a2b1

.

When dividing two fractions, Keep the first fraction the same, Flip the numerator and denominator

of the second fraction, then change the sign from division to multiplication. Then, simply carry

out the method above for multiplying fractions together.

Example 7.4: Simply the following expressions into one rational expression. Also, keep track

of the discontinuities.

(a)
x+ y

x
· x− y

y
(b)

1

x2
÷ 1

x
(c)

x2 + 1

x− 1
÷ x

x− 1
.

Solution: Again, we do these parts one at a time. Not much explanation is needed; it’s following

the methods seen above.

(a)
x+ y

x
· x− y

y
=

(x+ y)(x− y)

xy
=
x2 − y2

xy
, x 6= 0, y 6= 0.

(b)
1

x2
÷ 1

x
=

1

x2
· x

1
=

1

x
, x 6= 0.

(c)
x2 + 1

x− 2
÷ x

x− 1
=
x2 + 1

x− 1
· x− 1

x
=
x2 + 1

x
, x 6= 0, 1.

Using this knowledge of the operations associated with rational functions, let’s discuss

complex fractions, where we have fractions inside of fractions.

7.2 Complex Fractions

So how do we deal with fractions inside of fractions? There are multiple methods of dealing with

these kinds of problems, most of them come from being familiar and comfortable with fractions

and algebraic manipulation.

Most people would consider to follow the division rules stated in the previous section since

fractions are inherently dividing two things, and they would be mostly right! All we need to do

is implement this idea and we’ll arrive at the right answer in no time.



7.2 Complex Fractions – 78 –

7.2.1 Method 1: Convert to Multiplication

While there is not a general form of a complex fraction, here is one possible case demon-

strating the first method.(
f1(x)

f2(x)

)
(
g1(x)

g2(x)

) =
f1(x)

f2(x)
÷ g1(x)

g2(x)
=
f1(x)

f2(x)
· g2(x)

g1(x)
.

What must be done after this step in terms of simplification depends on the four functions within

it. Let’s look at some examples.

Example 7.5: Simplify
1 + 1

x

x2 − x
into a single rational expression. Note any discontinuities.

Solution: We first notice that there are two discontinuities (one at x = 0 and the other at x = 1).

Then, let’s complete the first step of turning this complex fraction into a multiplication problem.
1 + 1

x

x2 − x
=

(
1 +

1

x

)
÷
(
x2 − x

1

)
=

(
1 +

1

x

)
·
(

1

x2 − x

)
.

There are two ways to combine this expression into a single fraction, either to (1) use distributive

property then add the resulting fractions together or (2) combine the first term into a single

fraction then multiply. The latter process will end up being easier and quicker.

So, to combine the first term into a single fraction:

1 +
1

x
=
x

x
+

1

x
=
x+ 1

x
.

We can now plug this simplified term into the expression. Finally, we can then use the method

for multiplying fractions described in the previous section to combine everything into a single

rational expression.(
1 +

1

x

)
·
(

1

x2 − x

)
=

(
x+ 1

x

)(
1

x2 − x

)
=

x+ 1

x(x2 − x)
=

x+ 1

x3 − x2
.

�

Example 7.6: Simplify

1− x
x

+ 1

1

x
+

x
1
x + x

into a single rational expression. Note any discontinuities.

Solution: While this problem looks far more complicated than the previous, the same process

can be used to simplify each layer of the expression.

First, we simplify the numerator.
1− x
x

+ 1 =
1− x
x

+
x

x
=

1

x
.

Now, we simplify the denominator one term at a time. The first time is already completely

simplified, now we simplify the second term.
x

1
x + x

=
x

1
x + x2

x

=
x

x2+1
x

=
x2

x2 + 1
.

Now, we put it all together.
1
x

1
x + x2

x2+1

=
1
x

x2+1
x(x2+1)

+ x3

x(x2+1)

=
1
x

x3+x2+1
x(x2+1)

=
1

x
÷ x3 + x2 + 1

x(x2 + 1)
=

1

x
· x(x2 + 1)

x3 + x2 + 1
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=
x2 + 1

x3 + x2 + 1
.

Throughout the problem, we see x = 0 as a discontinuity, but the entire denominator (
1

x
+

x
1
x + x

)

has a root around x = −1.47 as well.�

Now, let’s consider the other way of solving problems like this. This is a bit more intuitive

and less obvious, but it can be a bit quicker.

7.2.2 Method 2: Multiply by a Fancy Form of One

Consider again the general form of a complex fraction:(
f1(x)

f2(x)

)
(
g1(x)

g2(x)

) =
f1(x)

f2(x)
÷ g1(x)

g2(x)
=
f1(x)

f2(x)
· g2(x)

g1(x)
.

While this new method does the exact same thing computationally, it’s just another way you can

simplify complex fractions.

As a trick, to simplify everything, we canmultiply the complex fractions by the product of its

denominators (divided by itself, so everything stays constant). This cancels out the denominators

of the two fractions within the expression.

Example 7.7: Simplify
x− x−1

x+1

x
into a single rational expression. Note any discontinuities.

Solution: Since the overall denominator (x) is already simplified, we only need to multiply by

x+ 1.
x− x−1

x+1

x
· x+ 1

x+ 1
=
x(x+ 1)− (x− 1)

x(x+ 1)
=
x2 + x− x+ 1

x2 + x
=
x2 + 1

x2 + x
.

For discontinuities, we see that x 6= 0 and x 6= −1.�

Example 7.8: Simplify
1

1−x + 1
x+1

1
1−x −

1
x+1

into a single rational expression. Note any discontinuities.

Solution: While 1− x and x+ 1 both appear twice, we only need to multiply by each once.
1

1−x + 1
x+1

1
1−x −

1
x+1

· (1− x)(x+ 1)

(1− x)(x+ 1)
=

(x+ 1) + (1− x)

(x+ 1)− (1− x)
=

2

2x
=

1

x
.

For discontinuities, we see that x 6= 1 and x 6= −1 from the initial problem, and x 6= 0 from the

final answer. (Also, if you set the entire denominator of the original problem equal to 0, you get

x 6= 0 as well.�

Remark: As seen in the previous example, we only multiply by unique denominator terms. In

mathematical terms, find the least common denominator.

We’ve covered simplifying fractions and complex fractions. When fractions are taught in

elementary school, students are also taught to convert to mixed numbers using long division.

The next section will cover this same idea with polynomials.
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7.3 Polynomial Division

In Section 7.1 we saw how to simplify an expression such as x +
x+ 1

x2 + 1
into a single rational

expression (which in this case would be
x3 + x2 + 1

x2 + 1
. A necessary piece of knowledge for the

future is how to do this process in reverse.

Note that this reverse process can only be done when the degree of the numerator is at least

as large as the degree of the denominator. For example,
x3 + 1

x+ 2
can be simplified while

2

2x2 − 1
cannot.

There are multiple methods of doing this − primarily the standard long division method

used for arithmetic and “synthetic” division. Each of these have their pros and cons: the method

of standard division is difficult to remember, while synthetic division is easy to remember but

only works in certain cases. What will be presented here is a method which does not need to be

memorized but understood. For this reason, it can be used/re-derived in the far future without

having to have it all memorized.

7.3.1 Method 1: Factoring the Numerator

The idea of this method is to factor the numerator such that it contains multiples of the denom-

inator. That way, when you divide by the denominator, all terms cancel except the remainder.

Let’s see this method in action.

Example 7.9: Factor the numerator in order to divide the expression
x2 − 2x+ 3

x− 3
.

Solution: What we initially want to do is be able to factor out an x − 3 term from part of the

numerator. We are already close to being able to do this with the first two terms (x2− 2x); what

we need instead is (x2 − 3x) so we can factor out an x-term, leaving us x(x − 3). While we

don’t have this currently, we can force this into the equation by adding a fancy form of zero:
x2 − 2x+ 3

x− 3
=
x2 + (−3x+ x)− 3

x− 3
=

(x2 − 3x) + (x− 3)

x− 3
=
x(x− 3) + 1(x− 3)

x− 3
.

We can now break this down by dividing:
x(x− 3) + 1(x− 3)

x− 3
=
x(x− 3)

x− 3
+
x− 3

x− 3
= x+ 1.

�

Let’s use this on another example. This time, the denominator won’t be linear.

Example 7.10: Divide the expression x
4 − 3x2 + x

x2 + 1
by factoring the numerator.

Solution: Let’s factor the numerator first.

x4 − 3x2 + x = x2(x2 + 1)− 4x2 + x = x2(x2 + 1)− 4(x2 + 1) + 4 + x.

Now, implement this and divide.
x2(x2 + 1)− 4(x2 + 1) + 4 + x

x2 + 1
= x2 − 4x+

4 + x

x2 + 1
.

�
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Note that in this example we still have a fraction left! This is equivalent to the remainder

seen in arithmetic fractions.

Now, let’s move on to the next method − typical long division.

7.3.2 Method 2: Standard Long Division

Our goal in this section is to follow long division how it was taught in elementary school. For

example, when dividing 7812 by 7, we get:

1116

7
)

7812
7000

812
700

112
70

42
42

0
Our goal is to do this with polynomials. It very much follows the same process; to ensure

maximum accuracy, it is imperative to align the terms by their degree. Lets look at some

examples.

Example 7.11: Compute
x5 + x4 − 3x3 + x− 2

x2 + x− 1
.

Solution: Note that the numerator doesn’t have an x2 term. To fix this, we chose to put a space

indicating where the term belongs. Other texts would write 0x2 instead. Either is acceptable.

Look at the long division illustrated below to see how polynomial long division works.

x3 − 2x+ 2

x2 + x− 1
)

x5 + x4 − 3x3 + x− 2

− x5 − x4 + x3

− 2x3 + x

2x3 + 2x2 − 2x

2x2 − x− 2

− 2x2 − 2x+ 2

− 3x

Note that this process is nearly the exact same as regular division. This is not meant to be difficult.

Using the long division, we see the final answer is
x5 + x4 − 3x3 + x− 2

x2 + x− 1
= x3 − 2x+ 2− 3x

x2 + x− 1
.

�
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7.3.3 Method 3: Synthetic Division

Synthetic division is a method of dividing a polynomial by a linear function and is extremely

useful in root-finding. Rather than using the remainder theorem, which often results in large

numbers, synthetic division offers a simple solution to this. It can be used for both root-finding

and generic long division.

For formatting purposes, the layout of the synthetic division shown will be slightly different

than the type taught by most teachers. Don’t be confused; the numbers are essentially in the

same place − the only thing that moves are the lines.

The easiest way to do this is by example. Let’s get started.

Example 7.12: Divide x
2 − 6x+ 8

x− 3
using synthetic division.

Solution: To start this, we write the coefficients of the polynomial across the top row. Be sure

that if any degrees are missing, they are indicated with a zero. Then, leave an empty line and

draw a horizontal line under it. Put the divisor to the left of the coefficients (in this case, we put

it on the second line). Draw a vertical line to separate the divisor from the coefficients.

Bring down the leading coefficient under the line. Multiply it by the divisor and write it

on the empty line in the second column. Add the column and write the result under the line.

Multiply this by the divisor and write it in the middle line in the third column. Add.

Below is the illustration of this process. Now, we need to interpret the result.

1 − 6 8

3 3 − 9

1 − 3 − 1

Weknow that the result must be a polynomial of degree 1 (since degree 2 divided by degree 1

results in degree 2−1 = 1). We only used coefficients; thus, the bottom line must be coefficients,

where the last number is the remainder. This means that the answer is x− 3− 1

x− 3
. �

Remark: Two things to mention here. First, note that we put 3 instead of 1 for the divisor. We

are dividing by x − 3, essentially meaning x = 3. This is the only time in which we don’t use

a coefficient. Secondly, the process illustrated in the second paragraph of the solution can be

repeated for an infinite number of degrees. Continue the process until there are no columns left.

Since this is an easier topic, we’ll only do this one more time. Let’s try a longer example.

Example 7.13: Divide x
4 − 13x3 + 51x2 − 35x− 100

x− 8
using synthetic division.

Solution: Following the process illustrated in the last example, we get:

1 − 13 51 − 35 − 100

8 8 − 40 88 424

1 − 5 11 53 324

This means that the answer is x3 − 5x2 + 11x+ 53 +
324

x− 8
. �

Now that we’ve discussed how to divide these polynomials, we need to discuss how to solve
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equations with rational functions. Since a rational function is built on polynomials, this process

won’t be much different than solving polynomial equations.

7.4 Rational Equations

Now that we’ve shown how tomanipulate rational expressions, let’s look at how to solve equations

which contain them. At a high level, you want to manipulate the equation in such a way (using

the methods taught in the previous three sections) to achieve the following form:
P1(x)

P2(x)
= 0, where P1(x) and P2(x) are polynomials.

Once everything is coalesced into a single simplified rational expression you can multiply both

sides by P2(x), leaving us with the polynomial equation P1(x) = 0. This can then be solved for

the solutions using the procedures taught in the previous three chapters.

Remark: Note that you must solve P2(x) = 0 for x to find any extraneous solutions. Any

solution where P1(x) = 0 matches P2(x) = 0 is extraneous.

Let’s look at some examples regarding this.

Example 7.14: Solve the rational equation x+ 1

x+ 2
=

1− x
x+ 2

.

Solution: To get this equation into the form discussed above, let’s move everything over to the

left side. We can then easily simplify since there is already a common denominator.
x+ 1

x+ 2
=

1− x
x+ 2

=⇒ x+ 1

x+ 2
− 1− x
x+ 2

= 0 =⇒ 2x

x+ 2
= 0.

First, we solve the denominator and get x 6= −2. Solving the top, we get x = 0. Since the two

do not match, the final answer is x = 0. �

Example 7.15: Solve the equation 1

x− 1
+

x

x+ 1
= 2.

Solution: First, we need to combine everything on the left side of the equation.
1

x− 1
+

x

x+ 1
= 2 =⇒ (x+ 1)

(x− 1)(x+ 1)
+

x(x− 1)

(x− 1)(x+ 1)
= 2 =⇒ x2 + 1

x2 − 1
= 2.

Now, we need to combine the 2 into the rational function.
x2 + 1

x2 − 1
− 2(x2 − 1)

x2 − 1
= 0 =⇒ 3− x2

x2 − 1
= 0.

Solving the denominator for x, we get x 6= −1, 1. Solving the numerator for x, we get x =

−
√

3,
√

3. Since there are no correspondences, the final answer is x = −
√

3,
√

3. �

Example 7.16: Solve the equation x
2 + 3x

x+ 1
= − 2

x+ 1
.

Solution: Since the two fractions have the same denominator, they will be easy to combine.
x2 + 3x

x+ 1
+

2

x+ 1
= 0 =⇒ x2 + 3x+ 2

x+ 1
= 0.

Solving the denominator for x, we get x 6= −1. Solving the numerator for x, we get (x+ 2)(x+

1) = 0, or x = −2,−1. Since there is a match, we must not include x = −1. Thus, the only

answer is x = −2. �

Let’s discuss the reason why we don’t consider x = −1 from an abstract perspective.

Any number divided by zero is an undefined value. In more detail, no value has been
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assigned by mathematicians to be “equal to” this expression. The full reason why will be

completely flushed out early on when you take Calculus as this problem brings up calculus-

related topics such as limits and continuity. If you take this undefined characteristic of dividing

by zero to be true, then you could translate the previous expression into the following:
−2

0
=
−2

0
=⇒ undefined = undefined.

The reason why this isn’t considered to be a solution to the problem is because when we equate

two things in math (whether they be numbers, algebraic expressions, matrices, etc. . . ) these two

things are never strictly “ideas.” Here in the expression above, however, we are equating two

ideas—the idea of being undefined. Therefore, it does not make sense to call x = −1 a solution

to the problem because the concept of equating two things at this point breaks down.

If you managed to make sense of the past two paragraphs, congratulations; this is a very

abstract line of reasoning to follow for what we expect at this mathematical level.
�

Important: If you are to take anything away from this, x = −1 is an extraneous solution

because it leads to an expression in which we divide by zero.

Finally, let’s take a look at graphing rational functions, the part of this chapter that is almost

completely different from the polynomial chapter.

7.5 Graphing Rational Expressions

For the past three sections we’ve been exploring rational expressions from a more abstract point

of view: how to manipulate and solve for them algebraically. What hasn’t been looked at so far is

what these expressions actually "look like" graphically. Graphing a rational expression is one of,

if not the most complex graphing problem you will find in a Pre-calculus course. This does not

necessarily mean they are the most "difficult," many may attest that conical or polar expressions

are harder; what is meant by "most complex" is that you must keep track of and be able to find a

wide variety of characteristics a given rational expression may have.

Whereas when you want to graph, for example, a parabola, you only need to find the vertex,

the y-intercept, and the x-intercepts (if there are any). With rational expressions, you will need

to find all of the following:

Start-Behavior End-Behavior Discontinuities

x-intercepts Horizontal Asymptotes Vertical Asymptotes
y-intercepts Oblique Asymptotes Holes

It is not expected that you know what all or even most of these mean; right now, we only expect

you to be familiar with x and y-intercepts.

We’ll start with the discontinuities section since it is both the easiest to understand and

to compute. A vertical asymptote appears in a graph whenever (in the most simplified form

of the function) you divide by zero. For example, for the function f(x) =
1

x+ 1
there exists
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a vertical asymptote at x = −1 since at this point the expression becomes 1
0 . In general, the

vertical asymptotes can be found by setting the denominator equal to zero. Around the vertical

asymptote the magnitude of the function will be very large since we are dividing by a number

close to zero.
�

Important: When asked for the asymptote(s) of a function, never give a value. Asymptotes

should always be given as the equation of a line.

Below we can see the graph of the function f(x) =
1

x− 1
in red and its vertical asymptote

x = 1 in blue. The closer x gets to 1 the larger (in magnitude) the function becomes; this is

because at these values of x we divide by a number close to zero, leaving a large result. This is

a defining characteristic of all vertical asymptotes.

Here we can see the graph of a function with two vertical asymptotes; more specifically, the

function is given by f(x) =
1

(x− 1)(x+ 2)
.

x

y(x)

f(x) =
1

x− 1
x

y(x)

f(x) =
1

(x+ 1)(x− 2)

�

Important: Notice how both functions change sign as x goes from one side of a vertical

asymptote to the other. While this is not a rule, it’s something to keep in mind for later.

x

y(x)

f(x) =
1

x− 1

Now, we have the graph of the function f(x) =
x+ 2

(x− 1)(x+ 2)
. The reason this specific function was chosen was

to show the differences between holes and vertical asymptotes. Ac-

cording to our method of finding vertical asymptotes we should see

two of them in the graph − at x = −2, 1. Instead, we only see the

second one with a "hole" at the point (−2,−1
2). Why? Well, there’s

one exception to the vertical asymptote rule: if at a given point the

expression becomes 0
0 you will have a hole, if the expression is any

other non-zero constant divided by zero there will be an asymptote.

In this case, whenweplug inx = −2, the expression becomes f(−2) =
−2 + 2

(−2− 1)(−2 + 2)
=

0

0
; this indicates that there is a hole at this point. On the other hand, when we plug in x = 1,

the expression becomes f(1) =
1 + 2

(1− 1)(1 + 2)
=

0

0
. Since the numerator is not also zero, we

know that we have an asymptote instead of a hole at x = 1.
�

Important: Whereas asymptotes are always given as the equation of a line, holes should always

be given as a point.
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So in this case we know the x-coordinate of the hole, but not the y-coordinate. How do we

find it? The first reasonable thing to do would be to plug this x-value into the function, but this

just gives us 0
0 (undefined). The trick to getting rid of this undefined value is to cancel out the

terms in the equation which causes the whole. In this case, the expression becomes:
x+ 2

(x− 1)(x+ 2)
=

1

x− 1
.

Plugging in x = −2 into this new expression gives us the y-value for the hole:
1

(−2)− 1
= −1

3
.

The coordinates of the hole are (−2,−1
3).

This is also a useful trick for graphing the rest of the function, the function behaves exactly

the same as this new expression except for the hole at (−2,−1
3).

Now we have to go over the three (horizontal/oblique) asymptote rules: Big Bottom, Big

Top, and Both Same. These three rules refer to comparing the degrees of the numerator versus

the denominator.

Big Top. This rule applies when the degree of the numerator is large than the degree

of the denominator. In this case, you will need to undergo the process of polynomial

long-division. After this process the expression should become of the form P (x)+B(x).

P (x) is a regular polynomial and B(x) is a rational expression which follows the big

bottom rule. After all this, you can determine that there will be an oblique asymptote with

an equation y(x) = P (x). For example, f(x) =
x2 − 2x+ 3

x− 3
= x+ 1 +

6

x− 3
will have

an oblique asymptote with an equation y(x) = x+ 1.

Big Bottom. This rule applies when the degree of the denominator is larger than that of

the numerator. There will be a horizontal asymptote at y = 0. For example, there will be

a horizontal asymptote at y = 0 for the function f(x) =
2x+ 1

x3 − 2x+ 3
.

Both Same. This rule applies when the degree of the numerator is equal to the degree of

the denominator. There will be a horizontal asymptote with a y-value of the ratio between

the leading coefficient of the numerator and that of the denominator. For example, there

will be a horizontal asymptote at y =
3

2
for the function f(x) =

3x2 − x+ 5

2x2 − 7
.

Remark: All rational functions will only ever have one horizontal or oblique asymptote. This

also excludes any graph from having both a horizontal and an oblique asymptote.

Example 7.17: Find the horizontal/oblique asymptotes of the functions f(x) =
x2 − 2x+ 1

x+ 2
,

g(x) =
2x2 − 6x+ 1

3x2 − 4x
, and h(x) =

x+ 2

x3 + 2
.

Solution: Here are the solutions to each part.
(a) Since the degree of the numerator is two, which is smaller than the degree of the

denominator (1), we can apply the Big Top rule. We must undergo the process of long division.
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x− 4

x+ 2
)

x2 − 2x+ 1

− x2 − 2x

− 4x+ 1

4x+ 8

9

This means that y(x) = x− 4 is the oblique asymptote for f(x).

(b) Since both the degree of the numerator and denominator are equal to two, the Both Same

rule applies. We must divide the leading coefficients of the numerator and denominator to get

our answer of a horizontal asymptote y(x) =
2

3
on the graph of g(x).

(c) Since the degree of the numerator is smaller than that of the denominator, we know the

Big Bottom rule applies. Thus, we know there is a horizontal asymptote y(x) = 0 on the graph

of h(x). �

By now, you should have the knowledge to understand the processes to graph more complicated

examples of rational functions. Wewill be taking a look at three such examples which collectively

work in all of the intricacies of start behavior, end behavior, and discontinuities.

Example 7.18: Graph the function f(x) =
x(x− 2)

(3x− 1)(x+ 2)
.

Solution: Remember, we need to go through the three different sections mentioned above; we’ll

begin with start behavior which is comprised of x and y-intercepts.

For the x-intercepts, we need to find when f(x) = 0. This means that we need to find

when the numerator equals zero, which happens when x = 0 and x = 2.

For the y-intercept, we plug in x = 0 to get the point at (0, 0).

Now, we need to determine the discontinuities. To do this, we set the denominator equal to 0 and

find that x 6= −2 and x 6= 1

3
. Since they are non-removable (they can’t be cancelled), there are

two asymptotes at x = −2 and x =
1

3
.

Now, let’s determine the end behavior. The easiest way to do this is to FOIL. This gives us
x(x− 2)

(3x− 1)(x+ 2)
=

x2 − 2x

3x2 + 5x− 2
.

From this expression, we can determine that there will be a horizontal asymptote given by

y(x) =
1

3
.

Let’s now put all of this information onto a graph, then slowly fill in the remainder based

on information we can easily deduce.

For the two regions on the end we can essentially fill these in like the parent function 1
x .

Since we see a zero on the right-most section (a point below the horizontal asymptote), we know

the graph must curve down towards negative infinity. Since there is no zero on the left-most

section, we know the graph must curve towards positive infinity near the other asymptote. This

is seen in the left graph.

Any section between vertical asymptotes will look like either a quadratic or cubic equation.
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To determine which of these it will looks like we suggest plugging in values. f(−1.999) will be

some large negative number; likewise, f(.333) will be some large positive number. Therefore,

because of this difference, we know the section between will look like a cubic. The right graph

shows the final graph. �

Congratulations! These types of problems are quite difficult and take a lot of time. Please

continue to attempt these problems, for they will be plentiful in pre-calculus and beyond.

x

y(x)

x

y(x)

K Chapter 7 Review Problemsk

1. Use synthetic division to divide the following polynomials.

(a)
2x4 − x2 + 3x− 5

x+ 1
(b)

1 + 2x− x2 + 3x3

x+ 4
(c)

x5 + x2 + x− 1

2x− 3
[?]

2. Use long division to divide the following polynomials.

(a)
2x2 − 3x+ 2

2x− 1
(b)

3x3 − x2 + 4x− 1

x2 + x+ 1
(c)

x5 + 3x3 + 1

x3 − x2 + x

3. Find the value of k such that f(x) is has no remainder:
4x3 − 2x2 + kx− 1

x2 + 2
.

4. Solve the equation
1

x− 2
+

1

4x− 5
=

1

3x− 1
+

1

2x− 6
.

K Chapter 7 Challenge Problemsk

1. Graph the function f(x) =
2x2 − x
x4 + 1

. (NOTE: This is in the challenge section for a reason!)

2. Graphically, explain why there are no other solutions to the system


1

1 +
√
x

1

1−
√
x

other

than x = 0.

3. Given the definitions ofS1, S2, andS3, determine the value of k such thatS1∪S2∪S3 = R.

S1 := the range of f(x) =
x(x+ 2)(2− x)

x(x+ 2)
.

S2 := {k}

S3 := the set containing the y-coordinate(s) to the solution of

f(x)

k(x+ 1)− 2
.



Chapter 8 Radicals and Rational Exponents

Contents

h Radical Expressions and Rational

Exponents

h Solving Radical Equations

h Radical Conjugates

h Graphing Radical Functions

h EvaluatingExpressionswithRadicals

You might be surprised that we dedicated an entire chapter to radical functions. They’re not all

that common, and the only thing that most people do with them is solve quadratic functions. So

what’s the purpose of needing an entire chapter just for them?

Radical functions happen to be much more than their polynomial counterpart. There are

lots of unique equations to solve, tricks to explore, and functions to approximate. Not only this,

these functions give insight on methods of graphing inverse functions, and show us that inverse

functions aren’t daunting at all.

8.1 Radical Expressions and Rational Exponents

This section is going to be nearly all definitions and won’t have much math in it. You may already

know the content in this section, but it’s still worth reading. You may find something you didn’t

know!

We know that radical functions are the inverse of a polynomial function, such as
√
x is the

inverse of x2... almost. Remember that
√
x has a domain restriction of x ≥ 0, meaning that we

only can take the positive portion of x2. This means that
√
x is the inverse of x2 if x ≥ 0. The

actual inverse of x2 is ±
√
x, which is the red graph shown below. It’s more commonly seen and

written as x = y2, a function demonstrated in Section 14.1 when parabolas as conic sections are

discussed.

So what is a radical function? How is it defined? The definition is shown below, and you

might notice it’s not the type of definition we’re used to.

Definition 8.1. Definition of a Radical Function

♣

Given some positive constant n such that n ∈ Z, we define the radical function as

f(x) = n
√
f0(x).

f0(x) is defined as the function inside the radical. The simplest of these functions is

f(x) = n
√
x.

This time, rather than defining the function independently, it is dependent of another function

f0(x). Why is that? The radical function is useless without an argument, sowe define a functional
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argument to do inside the radical.

Sowhat’s a rational exponent? Thismeans that there’s a rational number inside the exponent,

which indicates a radical. Take a look at the definition below.

Definition 8.2. Definition of a Rational Exponent

♣

Given positive constants a and b such that a, b ∈ Z, and real function f0(x), we define the

rational exponent as

f(x) = f0(x)
a
b =⇒ f(x) = b

√
f0(x)a.

The conversion between radical function and rational exponent is very important through-

out your career in mathematics.

Most of the time, rational exponents are easier to work with since it’s most similar to

polynomial expressions. Most of the examples in the next sections will involve radicals rather

than rational exponents; however, knowing how to use both will make your experience much

easier.

There’s not much else to cover in this section. Be sure to know how to convert between

rational exponents and radical functions. Now, let’s discuss rational equations.

8.2 Solving Radical Equations

The goal of this section is to convert radical equations into something that we are better with

working with: polynomials. Like the idea seen in Chapter 9, when we didn’t know how to solve

logarithmic functions, we converted them to exponential functions and solved them this way.

This chapter will explore common methods for solving radical equations. The goal is to

always remove all instances of the radical to be left with a polynomial equation that we know

how to solve.

We’ll learn by example for most of this chapter, so let’s begin.

Example 8.1: Solve the equation x =
√

2x+ 24.

Solution: The first step of solving this is removing the radical by squaring both sides of the

equation. This gives us

x2 = 2x+ 24 =⇒ x2 − 2x− 24 = 0.

We know how to solve this with factoring! This gives us

(x− 6)(x+ 4) = 0 =⇒
x1 = −4

x2 = 6
.

Unfortunately, we aren’t done this time! We need to check if both solutions are valid. When we

dealt with polynomials, we never had domain restrictions; however, by squaring both sides, we
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might have created an extraneous solution. Let’s check them.

x1 : −4 =
√

2(−4) + 24 =⇒ −4 =
√

16

x2 : 6 =
√

2(6) + 24 =⇒ 6 =
√

36

We see that x1 is not valid since the square root of a number must be positive! This means that

x = 6 is the only solution to this equation. �

Example 8.2: Find all x such that
√

6− x−
√

10 + 3x = 2.

Solution: For this problem, before we square both sides, we are going to move the
√

10 + 3x

term to the other side. To understand why, attempt this problem without making this maneuver

and notice that it requires more work. Now, we have
√

6− x = 2 +
√

10 + 3x.We square both

sides to get

6−x = 4 + (10 + 3x) + 4
√

10 + 3x =⇒ −8− 4x = 4
√

10 + 3x =⇒ −2−x =
√

10 + 3x.

We need to square again to remove the last square root, which gives us

4 + 4x+ x2 = 10 + 3x =⇒ x2 + x− 6 = 0 =⇒
x1 = −3

x2 = 2
.

We have to check if either solution is extraneous. We see that x2 is extraneous while x1 isn’t, so

the only solution is x = −3. �

Let’s take this a step further and add quadratics.

Example 8.3: Solve the equation
√
x2 − 5x+ 4−

√
x2 − 10x+ 9 = x− 1.

Solution: First, wewill factor the quadratics inside to get
√

(x− 1)(x− 4)−
√

(x− 1)(x− 9) =

x− 1.We can quickly tell that x = 1 is a solution since all terms become zero. However, there

may be more solutions.

We need to square both sides to eliminate one of the radicals. Here we get

(x− 1)(x− 4) + (x− 1)(x− 9)− 2
√

(x− 1)2(x− 4)(x− 9) = (x− 1)2.

You may be tempted to pull out the (x− 1) term and divide by it, however, we cannot do this. If

we check values of x such that x > 1, x = 1, and x < 1, we get that not all are true. This may

indicate that it’s a solution, so we leave it in there. We isolate the radical again and simplify:

2
√

(x− 1)2(x− 4)(x− 9) = (x− 1)
(
(x− 4) + (x− 9)− (x− 1)

)
=⇒ 2

√
(x− 1)2(x− 4)(x− 9) = (x− 1)(x− 12).

We can now square both sides to remove the radical.

4(x− 1)2(x− 4)(x− 9) = (x− 1)2(x− 12)2.

We need to rearrange to solve for x;

(x− 1)2
(
4(x− 4)(x− 9)− (x− 12)2

)
= (x− 1)2(3x2 − 28x) = x(x− 1)2(3x− 28).

We see here that the roots here are x = 0, 1, 283 . We see that x = 28
3 is extraneous, leaving the

only answers to be x = 0 and x = 1. �

Radical equations don’t get much harder than these, unless you plan to compete in competi-
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tive mathematics. If you can solve these, you can solve any similar problem that a teacher throws

at you. Radical inequalities will be discussed in Section 14.4; those can get relatively difficult.

8.3 Radical Conjugates

In Chapter 3 we discussed finding the conjugate of a complex number to rationalize the denomi-

nator. We will use the section here to inspire the rationalization of radical functions and to solve

more problems with it.

Given some rational function f(x) =
1

√
a+
√
b
, we can rationalize by multiplying the top

and bottom by
√
a−
√
b. This gives us

f(x) =
1

√
a+
√
b
·
√
a−
√
b

√
a−
√
b

=

√
a−
√
b

a− b
.

Remark: The expressions
√
a +
√
b and

√
a −
√
b are sometimes referred to as radical

conjugates.

Let’s attempt a few examples.

Example 8.4: Rationalize the denominator of
1√

7 +
√

2
.

Solution: Weneed to remove the denominator bymultiplying by the conjugate, which is
√

7−
√

2.

This gives us
1√

7 +
√

2
=

1√
7 +
√

2
·
√

7−
√

2√
7−
√

2
=

√
7−
√

2

5
.

�

Now, let’s attempt to solve an equation by using the conjugates.

Example 8.5: Find all real values of x such that
x+
√
x2 − 1

x−
√
x2 − 1

+
x−
√
x2 − 1

x+
√
x2 − 1

= 98.

Solution: We meed to multiply by the conjugate of both fractions to remove the denominators.

x+
√
x2 − 1

x−
√
x2 − 1

(
x+
√
x2 − 1

x+
√
x2 − 1

)
+
x−
√
x2 − 1

x+
√
x2 − 1

(
x−
√
x2 − 1

x−
√
x2 − 1

)
= (x+

√
x2 − 1)2 + (x−

√
x2 − 1)2 = 98.

Expanding the squares gives us (x2 +2x
√
x2 + 1+x2−1)+(x2−2x

√
x2 − 1+x2−1) = 98,

so 4x2 = 100. This gives us x = −5, 5. �

Let’s solve one more example using a cubic function.

Example 8.6: Rationalize the denominator of
1

3
√

3− 1
.

Solution: We may attempt to use the "multiply by the conjugate" strategy in hopes that it will

work, but we find that it don’t work. Multiplying by the conjugate doesn’t remove any of the

radicals. So, rather than using the difference of squares, let’s use the difference of cubes. The

difference of cubes says that x3 − y3 = (x− y)(x2 + xy + y2). So, we need to let x = 3
√

3 and

y = 1, and we will get

3− 1 = (
3
√

3− 1)(
3
√

9 +
3
√

3 + 1).
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We can use this to rationalize the denominator of our fraction:
1

3
√

3− 1
=

1
3
√

3− 1
·

3
√

9 + 3
√

3 + 1
3
√

9 + 3
√

3 + 1
=

3
√

9 + 3
√

3 + 1

2
.

�

Now, let’s take a look at graphing radical functions.

8.4 Graphing Radical Functions

We touched on graphing radical functions in Chapter 2 when we discussed function transfor-

mations. Radical functions were primarily used to demonstrate domain restrictions; now, we

need to discuss how to graph any type. Refer to the transformations chapter for an help on

transformations.

As you have gotten familiar with radical functions/expressions, and how tomanipulate them,

we can now move on to graphing them. In terms of what you’ll usually find for one of these

graphing problems, most expressions will come in the following form:

f(x) = A n
√
B(x− k) + h.

Again, this formula comes down to the four most basic transformations you can make on a

function: shifting the input (x− k), scaling the input (Bx), shifting the output (+h), and scaling
the output (A).

Before we get too carried away with transformations, we need to look at the parent radical

functions. These can be split into two groups: n
√
x where n is even, and where n is odd.

x

f(x)

Even (n = 2 shown)

x

f(x)

Odd (n = 3 shown)

Notice how the domain of all even cases are restricted to R+, this is because finding even

roots of negative numbers requires the use of complex numbers. Given this information, let’s try

some examples with the basic transformations.

When trying to find points with integer coordinates, there’s a useful trick we can use.

Regardless of what’s actually inside the radical, imagine trying to find points for the parent

function. As an example, what x-coordinates produce integer y-coordinates for the function

f(x) =
√
x? Well, the perfect squares: 0,1,4,9,. . .. We can utilize this knowledge to determine
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when say f(x) =
√

2x− 1 gives nice results. Simply set the inside (2x − 1) equal to each of

the perfect squares:

2x− 1 x
√

2x− 1

0 1
2 0

1 1 1
4 5

2 2
9 5 3

x

f(x)

This process works the same for cube roots − set the

inside equal to the perfect cubes (1,8,27,. . .).

Example 8.7: Sketch the function f(x) = 2
√
x− 1.

Solution: The first thing to take into account is that we are

working with an even root (n = 2) meaning the domain will

be restricted. Since we are shifting the input, the domain will

shift as well to become R ≥ 1 (when in the parent function’s

case it was R ≥ 0).

Finding thex-valueswhich produce perfect squares, then

calculating their y-coordinates gives the points (5, 4) and (10, 9). �

x

f(x)

Example 8.8: Sketch the function f(x) = 1−
√
x

2
.

Solution: One again, since we are dealing with another even

root case (n=2) the domain will be restricted. Since the input

is not being shifted, unlike the previous example, the domain

will remain the same as the parent function (R ≥ 0).

At the “vertex” x = 0, we have the point (0, 1). Finding

other small cases which produce perfect squares gives the

points (2, 0) and (8,−1).

Note that the graph curves downwards due to the negative

sign in front of the radical. �

x

f(x)

Let’s try an example using the cube root function and

see how its different.

Example 8.9: Sketch the function f(x) = 3
√

2x− 1.

Solution: Now, we have a case in which we are finding odd

roots (n = 3), meaning our domain is not restricted and spans

all of R.

Finding relatively small inputs which produce perfect

cubes gives us the points (0,−1), (−4,−3), and (4, 1). �

What if we have radicals where n > 3? Can we use the

same rules? Do they look the same? Let’s find out.
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Example 8.10: Sketch the function f(x) = 4
√

4x− 4.

Solution: With n = 4 being even, we know the domain will be restricted. Since we are both

x

f(x)

scaling and shifting the input, we need to factor: 4
√

4x− 4 =

4
√

4(x− 1). This tells us the parent function 4
√
x is being

horizontally shifted to the right 1 unit. Therefore, the domain

is given by R ≥ 1. Points with integer coordinates include

(1, 0) and (4, 1). �

Example 8.11: Sketch the function f(x) = 6
√

128− 64x.

Solution: This problem highlights the usefulness of knowing

the powers of 2.

Since n = 6 is even the domain is restricted. We also

need to factor the inside of the radical since we are scaling and shifting the input: 6
√

128− 64x =

6
√
−64(x− 2).

x

f(x)

Points with integer coefficients include (2, 0), (12764 , 1),

and (1, 2). �

Remark: The graph for this one is the second graph on this

page; spacing issues came up again, which caused us to put it

lower than desired.

With this, we will conclude our discussion on evaluating

expressions with radical functions. These should be quite

doable using your knowledge of function transformations; the

only new concept should be the parity of n and its consequen-

tial domain restrictions. We will finish the chapter with a final section on evaluating (numeric)

expressions with radicals.

8.5 Evaluating Expressions with Radicals

We’ve seen that both raising radical equations to powers and conjugates are effective ways to

simplify radicals, so let’s use this to evaluate expressions with radicals.

Example 8.12: Simplify
√

3 + 2
√

2.

Solution: Our goal in doing this is to remove the radical from inside the radical. To do this, we

assign variable x to equal the expression we want to simplify, and then square both sides.

x =

√
3 + 2

√
2 =⇒ x2 = 3 + 2

√
2.

We see that x must be in the form a + b
√

2 (a, b ∈ R, b 6= 0). This means that x2 =

a2 + 2b2 + 2ab
√

2, which tells us that

a2 + 2b2 + 2ab
√

2 = 3 + 2
√

2 =⇒

a
2 + 2b2 = 3

ab = 1
.
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We notice that a = b = 1 is a valid solution, thus
√

3 + 2
√

2 = 1 +
√

2. �

Example 8.13: Find a and b, where a, b ∈ Z, such that
√

74− 12
√

30 =
√
a −
√
b. Then

simplify.

Solution: The first thing we want to do is square both sides (since they give us the form). This

means that

74− 12
√

30 = a+ b− 2
√
ab =⇒

74 = a+ b
√
ab =

√
1080

.

Substituting a = 74−b and rearranging, we get b2−74b+1080 = 0. Solving, we get b = 20, 54

(thus, a = 54, 20 respectively). Since the final solution must be positive, we choose a = 54 and

b = 20. This means that√
74− 12

√
30 =

√
54−

√
20 = 3

√
6− 2

√
5.

�

Let’s try this same process using cubic functions instead.

Example 8.14: Simplify 3
√

45− 29
√

2.

Solution: We can take another guess at the form of the solution and say that it will be a− b
√

2,

where a, b ∈ Z. We cube both sides to find

45− 29
√

2 = a3 − 3a2b
√

2 + 6ab2 − 2b3
√

2.

You can use a method of your choice for this; we will use binomial theorem discussed in Section

6.4.3. We split this into a system to geta
3 + 6ab2 = 45

3a2b+ 2b3 = 29
=⇒

a(a2 + 6b2) = 45

b(3a2 + 2b2) = 29
.

This seems daunting to solve at first, but we note that 29 is prime, meaning that b = 1 or b = 29.

b = 29 is impossible (make sure you see why!), so must find when 3a2 + 2 = 29. This is when

a = −3, 3. Only a = 3 works in the first equation, so we have 3
√

45− 29
√

2 = 3−
√

2. �

This concludes our study of radical functions. The problems are somewhat different than

what we are used to; however, they are all solvable using techniques we’ve already studied.

Attempt the review and challenge problems. The challenge problems are a tad on the harder

side since they lean toward competition mathematics; however, don’t be discouraged!

K Chapter 8 Review Problemsk

1. Simplify
√

6 +
√

11 +
√

6−
√

11.

2. Rationalize the denominator of each of the following:

(a)
1√

3−
√

2
(c)

1
3
√

7− 1

(b)
4

3 +
√

7
(d)

2
3
√

25 + 3
√

5 + 1
[?]
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3. Find all real solutions to the equation
√
x+ 8− 6√

x+ 8
= 5.

4. Solve the equation
√

5x− 1 +
√
x− 1 = 2.

5. Without using a calculator, determine whether
√

2 +
√

3 or
√

10 is greater.

6. Find all x such that
√
x2 + 7x+ 10 > x+ 2 +

√
x+ 2.

7. Answer the following questions.

(a) Is it true that
√

(x− 1)2 = x− 1 for all real values of x? Why or why not?

(b) Is it true that 3
√

(x− 1)3 = x− 1 for all real values of x? Why or why not?

(c) Is it true that 4
√

(x− 1)4 = (x− 1)2 for all real values of x? Why or why not?

8. Find all positive solutions x that satisfy
√
x < 2x.

9. Simplify: 4
√

49 + 20
√

6.

10. Evaluate the product
(√

5 +
√

6 +
√

7
) (√

5 +
√

6−
√

7
) (√

5−
√

6 +
√

7
) (
−
√

5 +
√

6 +
√

7
)
.

11. Find all solutions to the equation
√
x− 1−

√
x+ 1 + 1 = 0

12. Write the number
1√

2− 3
√

2
as the sum of terms of the form 2r, where r ∈ Q. (For

example, 21 + 2−1/3 + 28/5 is a sum of this form.)

13. Find all solutions to the equation 4
√
x3 − 2x2 + x =

√
x3 − x2.

K Chapter 8 Challenge Problemsk

1. If 3
√
n+
√
n2 + 8 +

n
√
n−
√
n2 + 8 = 8, where n ∈ Z, find n.

2. Solve the equation 3
√

60− x+ 3
√
x− 11 = 3

√
4.

3. Find the ordered triple of positive integers (a, b, c) forwhich
(√

5 +
√

2−
√

3
) (

3
√
a+
√
b− 2

√
c
)

=

12.

4. Find the ordered pair of positive integers (a, b), wherea < b, such that
√

1 +
√

21 + 12
√

3 =
√
a+
√
b.

5. Rationalize the denominator and remove nested roots from
√

4 + 2
√

3 +
√

4− 2
√

3√
4 + 2

√
3−

√
4− 2

√
3
.

6. Find all x such that 3
√

5x2 + 24x+ 8− 2 = x.

7. Simplify 3

√√
980

27
+ 6− 3

√√
980

27
− 6. (HINT:make the problem less ugly by introducing

some variables.)
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We now move on to something that’s almost completely new in this chapter: exponential func-

tions. As you may know, exponential functions are functions that have a constant base raised

to a power of a function exponent. Since we have a fairly good grasp of how to graph normal

functions with all of their transformations, we won’t be looking too much into that. We’ll just

focus on key aspects of exponential functions that you need to know.

What is the general form of an exponential function? Exponential functions follow the form

f(x) = a · bx; b > 0, b 6= 1, and a 6= 0.

At first, the restrictions seem rather odd, so let’s take a look at why these must hold true.

The restriction on a is pretty simple; if a = 0, then f(x) = 0. This defeats the purpose of

an exponential function, so we make this restriction to allow for the graph to be exponential.

The restriction that b 6= 0 follows the same logic as a 6= 0. It defeats the purpose. But why

can’t b < 0? This would affect the domain of the function. For any negative value of b, x can no

longer be an even integer. Since we can’t take the second, fourth, sixth, etc. roots of a negative

number, that cuts the domain. To keep the domain at x ∈ R, we add this restriction. Finally, if

b = 1, then the function becomes a constant function of f(x) = a, again defeating the purpose

of an exponential function.

9.1 Exponential Functions

x

y(x) f(x) = 2x

As we’ve done with all previous chapters, we want to know what

one looks like. This shape is somewhat similar to ones we already

know, but it looks different. It looks most similar to the square root

function after being rotated 180◦.

Rather than simply giving the graph this time, let’s attempt to

derive the graph via plotting points and the conceptual idea of an

exponential function. We know that, for an increasing value of x,

f(x) is going to get b times bigger. This means that it is going to
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increase at an increasing rate over time (make sure you understand

what this means).

When x = 0, we know that f(0) = a. This means that we can remember that a is the

y-intercept. When x < 0, f(x) is simply a fraction with the base getting exponentially bigger.

The graph is shown above on the previous page.

Note that the shape of this graph approximates a J-shape. In other fields, such as Biology,

Environmental Science, and Economics, the curve is called a J-Curve.

Let’s note the important aspects of the function.

It has a horizontal asymptote: y = 0. This will apply to every exponential function unless

you shift it vertically.

It has a y-intercept of (0, a).

Up to this point, what we’ve discussed only applies to b > 1. What happens if 0 < b < 1? That

means that we have some fraction raised to a power, meaning that as x gets larger, f(x) gets

closer and closer to y = 0. This is a phenomenon we call exponential decay. To the right, we

have a graph that demonstrates exponential decay.

You may be wondering why the graph flips. The graph to the right, g(x) =

(
1

2

)x
, is a

perfect reflection of f(x) = 2x over the x-axis. Why is that? We didn’t change the value of x at

all! This idea has to do with the definition of a negative exponent. Let’s look at the following

theorem.

Definition 9.1. The Negative Exponent

♣

Given some real base b such that b > 0 and b 6= 1, we define the negative exponent as

b−x =

(
1

b

)x
=

1

bx
.

Re-writing g(x) in this fashion, we get that g(x) = 2−x. By definition, this is a reflection

over the y-axis.

So what else is there to this? There seemingly isn’t that much to cover in this chapter, but

we have a lot to discuss. There are a lot of applications. There’s nothing else to do in this section,

but to introduce the next topic briefly, let’s ask the following question: does the exponential

function have an inverse?

The next section will show that it indeed does; it’s called the logarithmic function. Consider

the equation 2x = 55. Without guessing, we have no way to solve it at the moment. These are

where logarithms come to help us.

9.2 Logarithms and Logarithmic Functions

Before we introduce the concept of a logarithm, we have to review some of the properties of

exponents. We will have properties of logarithms that will be very similar to the properties of

exponents; we will explain why soon.
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Here are the properties of exponents that we need to know.

Theorem 9.1. Properties of Exponents

♥

Given a real base b such that b > 0 and b > 1, define x and y to be real exponents on R.

The following properties occur:

1. When we multiply exponents with the same base, they add: bx · by = bx+y.

2. When we divide exponents with the same base, they subtract:
bx

by
= bx−y.

3. When we raise an exponent to a power, they multiply: (bx)y = bxy.

�

Important: There is a distinction that needs to be made on the last property. We will make a

strict distinction between b(xy) and (bx)y. Although they are equal if b, x, and y are all constants,

we will not write the first as bxy.

Whenever we want to solve an equation, we have to take the inverse. For example, to solve

x2 = 4, we take the square root. To solve x+ 4 = −2, we subtract. So what’s the inverse of the

exponential function? It’s the logarithm.

A logarithm is used to answer the question: what number do I raise the base to obtain a

value? An exponent is used to answer the question: What number do I obtain when I raise the

base to a certain value? A radical is used to answer the question: What base raised to a given

power gives the value? These three functions form a type of triangle that connects the equation

bx = y.

Let’s take a look at the general form of a logarithm. It looks like

logb(y) = x.

The value of b is the base, y is the argument, and x is the value produced. This function literally

means: to what value do I raise b to get x?

Let’s go back to the question posed at the end of last section. Our goal is to solve

2x = 55.

To solve this function, we need to take the inverse (the logarithm) of both sides. How do we do

that? What does that even mean? Why are there so many unanswered questions?

Let’s consider this one step at a time. The process isn’t hard.

In the general form of the logarithm, we used the same value of b for the base. That’s not

a coincidence. The base of the logarithm must match the base of the exponent. In this case,

b = 2. We want to solve for x, so that must go on the outside. That leaves 55 for the argument.

This means that we’ve converted the equation to

2x = 55 =⇒ log2(55) = x.

But what does that do for us? We still don’t know how to solve that! We’ll discuss how to solve

it very soon (it’s just using a Calculator).

Remark: Note how we converted from exponential to logarithmic. Converting back is super

easy; just perform the opposite maneuver. All we did is switch the exponent and argument and
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keep the base. Be sure you can do this with ease before we move on, as it only gets harder from

here!

As usual, let’s take a look at at a graph of a logarithm. This is super easy to figure out, since

it’s simply the inverse of an exponential graph (we learned how to do this in Chapter 2.

x

y(x)

f(x) = log2(x)

Let’s take a look at some of the important features of the graph.

Although it’s difficult to tell, there is an asymptote at x = 0. This

could move based on horizontal translations. There is an x-intercept

at x = 1. This is true for any base b, but it could change based on

vertical and horizontal translations.

Look how this graph looks in comparison to the inverse func-

tion, y(x) = 2x. This graph was shown in the previous section. Try

to put them together on the same plot along with the reflection line.

This proves that the functions are indeed inverses.

Something else that youmight’ve noticed is thatwe neverwrite the logarithm as logx(a) = y.

Why is this? Why can’t there be a variable base? The short answer is that it can, but it’s not

helpful. Some problems will ask you to solve for that variable base. Remember the definitions

that we covered at the beginning of the section. The final definition, the definition of a radical,

had the base as the variable of interest. That means that we can solve for the base using quadratics,

cubics, etc.

logx(a) = y =⇒ xy = a.

As we can see, we can solve for x using polynomial methods.

Now, we can take a look at the properties of logarithms.

Theorem 9.2. Properties of Logarithms

♥

Given a real bases a and b such that 0 < b < 1 and b > 1, and 0 < a < 1 and b < 1, we

define x and y as real numbers or functions. The following properties must be true:

When we add logarithms with the same base, we multiply the arguments: logb(x) +

logb(y) = logb(xy).

When we subtract logarithms with the same base, we subtract the arguments:

logb(x)− logb(y) = logb

(
x

y

)
.

When there is an exponent inside a logarithm, we can bring it to the front:

logb(x
y) = y · logb(x).

To change the base of a logarithm: logb(x) =
loga(x)

loga(b)
.

Remark: We can expand on the third property to allow y to be it’s own logarithmic function of

a different base. This means that loga(y) · logb(x) = logb
(
xloga(y)

)
.

Getting back to evaluating log2(55), we need to figure out a way to evaluate this. Most

calculators only have a log10() function and the natural log() function. We’ll speak of the log()
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function in the next section. If we change the base to something the calculator understands, we

can plug it in.

log2(55) =
log10(55)

log10(2)
≈ 5.78.

With this, we conclude our discussion of logarithms. Note that we didn’t cover transforma-

tions in this section; we want you to figure out the transformations for this function and how they

work. In the next sections, we’ll take a look at the natural logarithm, log(x), and the applications

of logarithms.

9.3 Applications of Exponential and Logarithmic Functions

In this section, we will deal with the three common applications of exponents and logarithms.

We will discuss interest in finance, population growth and decay, and radioactive decay. We

begin with interest first.

What does it mean for a company to charge interest? When you take a loan from a company,

the company takes a percentage of your monthly payment. The less money you’ve borrowed,

the less money that they charge. In another scenario, if you invest money into a hedge fund,

this money also accrues interest. Money, given by the banking company as a percentage of the

balance, adds to your account in certain intervals.

Let’s put this into math terms to better understand what’s going on here.

You begin with a Principal amount, denoted as P . This is the initial investment. Then,

there is an annual interest rate, denoted as r.

Initially, I have P dollars. After 1 year, we have P + Pr = P (1 + r) dollars in the bank.

After 2 years, we have P + Pr+ (P + Pr)r = P 2 + 2Pr+ Pr2 = P (1 + r)2. You see where

this is going; after t years, we have P (1 + r)t dollars.

This gives us our interest function. The amount of money, A, that we have a certain time is

defined as A(t) = P (1 + r)t. However, this assumes that interest is compounded annually, but

this isn’t always the case. What if interest is compounded monthly? Quarterly? Daily? We need

to account for this by introducing a new variable. This variable, n, is the number of compilations

per year. This alters the formula to

A(t) = P (1 + r)t =⇒ A(t) = P
(

1 +
r

n

)nt
.

The derivation for this transition is complicated, so we won’t include it here. We’ll just provide

some justification for it.

Let’s explain the
r

n
. If an interest rate compounds monthly, that will mean that we have to

divide the rate by 12. This would make logical sense. If the rate applies yearly, and you divide it

by 12, you would get the monthly interest rate.

Now to explain the nt part, if a rate compounds monthly, that would mean every month it

compounds. That would mean that it should compound 12 times within a year. Compounding
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is just a fancy term for multiplying. And this would make sense. Within one year, a monthly

interest rate should compound 12 times, because there are 12 months within a year. Hence why

if you were to plug it in, the base would be raised to the 12th power.

Let’s go over some of the correspondences between n and the vocabulary term used.

Semiannually =⇒ n = 2.

Quarterly =⇒ n = 4.

Monthly =⇒ n = 12.

Daily =⇒ n = 365.

There is one final type of compounded interest that we need to cover. It is denoted

as continuously-compounded interest. Now continuously means every living moment, every

second, millisecond, basically any moment of existence, the interest compounds. What happens

if we infinitely compound something? What happens to this equation then?

We need to derive a new formula for this. To do this, we will see what happens as n→∞.

Assuming the Principal amount is $1, with an interest rate of 100%, and the time is 1 year, let’s

determine the money we’ll have at the end of the year.
Compilations per Year Money Accrued

Annually (n = 1) (1 + 1)1 = 2

Semi-Annually (n = 2)
(

1 +
1

2

)2

= 2.25

Quarterly (n = 4)
(

1 +
1

4

)4

= 2.4414

Monthly (n = 12)
(

1 +
1

12

)12

= 2.6130

Weekly (n = 48)
(

1 +
1

48

)48

= 2.6905

Daily (n = 365)
(

1 +
1

365

)365

= 2.7146

Every Hour (n = 8760)
(

1 +
1

8760

)8760

= 2.7181

Every Minute (n = 525600)
(

1 +
1

525600

)525600

= 2.718328

Every Second (n = 31536000)
(

1 +
1

31536000

)31536000

= 2.71828

We see that this approaches a limiting value of around 2.718281828 . . ., which we will

now denote as a fundamental constant. Euler, who discovered this limiting value, denoted the

constant e. A logarithm that uses e as it’s base is denoted as the natural logarithm (as it appears

in nature). In this book, the natural logarithm will be denoted as log().

Remark: This is not how most American books denote the natural logarithm. Most American

books use ln(). However, considering that the entire rest of the world uses it, we will stick with

the log() notation.

This constant appears almost everywhere (it’s almost scary). Bacteria populations abide by

it, electric circuits abide by it, glowing rocks abide by it, and more.
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So what happens to our equation now? We can’t plug in infinity into the places because, that

makes no sense. Well for reasons I’m going to spare (for now, just accept algebra and calculus),

the new equation becomes:

A(t) = Pert.

Let’s look at some examples to understand how we use these equations.

Example 9.1: Quinn invests 350, 000 dollars into a bank account. Interest is compounded

monthly with an annual interest rate of 10%. How much will the house be worth in 10 years

(assuming there are no outside influential factors)? How much time will it take for the value of

the account to double?

Solution: Let’s mark down what we know for the first question. We know that P = 350, 000,

r = 0.10, n = 12, and t = 10. Our goal is to find A(t); to do this, we simply plug into the

formula.

A(t) = 350000

(
1 +

0.10

12

)12·10
= 350000

(
121

120

)120

≈ $947, 464.52.

Now, for the second question. If the house doubles in value, we now know that A(t) = 700, 000

and we need to solve for t.

700000 = 350000

(
121

120

)12t

=⇒ 2 =

(
121

120

)12t

=⇒ t =
1

12
log( 121

120)(2) ≈ 6.960.

�

Remark: Two things to discuss here. First, make sure you understand how to plug the messy

value of t into the calculator to get the right answer. Watch to make sure that your parentheses

are in the right locations so that you don’t mess up the answer. Also, be sure you understand how

I solved for t. Take the logarithm of both sides, then divide by 12 to achieve the final answer.

Be sure that you are extremely comfortable with this process, almost to the point where you can

mentally rearrange it with no error.

Example 9.2: Cole is deciding whether they should invest 100 dollars into a company that

compounds daily or a company that compounds continuously. Both companies have interest

rates of 5%. Which should Cole invest in?

Solution: The short answer is: the second option. Mathematically, the more times that we

compile something, the more money you will acquire. Let’s see this in action.

In each calculation, wewill show the daily compilation first, then the continuous compilation.

Let’s see the amount of money made after one year.

A(1) = 100

(
1 +

0.05

365

)365·1
= 105.13

A(1) = 100e0.05·1 = 105.13
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They’re the same! Let’s keep increasing the years. Let’s try 10 years to see if they’re the same.

A(10) = 100

(
1 +

0.05

365

)365·10
= 164.87

A(10) = 100e0.05·10 = 164.87

Again, they’re the same. Does that mean that they’ll always be the same? Not necessarily! Let’s

go up to 100 years.

A(100) = 100

(
1 +

0.05

365

)365·100
= 14841.32

A(100) = 100e0.05·100 = 14836.23

Now there’s a difference! It’s not a large difference, but it’s still worth something. That means

that, in the long run, we should always shoot for a continuously-compounding investment.�

This also brings a point about exponential functions. They take a while to get large. But

when they do, they will increase in value very quickly. This is also why people get into trouble

with credit card debt and other debts where interest is involved. Obviously with higher interest

rates, this increase happens more quickly, and as a result, when people don’t notice it, the power

of mathematics makes them declare bankruptcy.

Now, let’s consider the opposite scenario. What happens when something loses money?

For example, cars depreciate over time. How does that work? Let’s look at an example.

Example 9.3: A Honda Civic depreciates at a rate of 20% every year. Suppose Joel bought it at

a price of 18m000 dollars. How long until the Honda Civic loses half of its worth? Also, how

much will the car be worth in 5 years’ time (assuming a stable economy)?

Solution: In this case, we are going to slightly alter the equation. Since we are losing money,

we change the value of r to be negative. This makes the equation

A(t) = P (1− r)t.

Car’s don’t compound on their depreciation. So everything here is annual, so n = 1. Otherwise

it would be really sad when you see how little your car is worth at the end of two years.

Let’s answer the second part first, since it’s easier.

A(5) = 18000(1− 0.2)5 = 5898.24.

Now, let’s answer the first part.

90000 = 18000(1− 0.2)t =⇒ 1

2
= 0.8t =⇒ t = log0.5(0.8) ≈ 3.11.

�

Now notice how sad that is. In less than 5 years, your car will already have lost half of its

value. Moral of the story: Don’t buy a car and intend on selling it. It’s not worth it.

We now move on to radioactive decay. This follows the exact same process and even uses

the same formula. Thus, we won’t do any explaining here; we’ll just move on to the examples.

Example 9.4: Suppose I have 18 grams of Uranium-234 and it has a half-life of 9 million years.

How long will it take for me to have 9 grams?
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Solution: This is a trick question. Since we’re asked for the time to find half the given amount,

the answer is simply the half-life. It’s 9 million years. �

Example 9.5: Suppose I have 18 grams of Uranium-233 with an unknown half-life. I know that

5 years ago I had 23 grams. What is the half-life of the Uranium? And given that, how long will

it take for me to have 6 grams of Uranium 233?

Solution: Since this is a naturally-occurring event, we use the natural base of e. That means we

can use the equation A(t) = Pert. We use the first part of the information to deduce the rate of

decay.

18 = 23e5r =⇒ r =
1

5
log

(
18

23

)
≈ −0.049.

Now, we find the half-life.
1

2
= e−0.049t =⇒ = − 1

0.049
log

(
1

2

)
≈ 14.15.

Therefore, the half-life of Uranium is 14.15 years. (No, this is not normal.) Now that we’ve

figured out the rate and the half-life, we can move on to the second question.

6 = 23e−0.049t =⇒ − 1

0.049
log

(
6

23

)
= t ≈ 27.42.

�

And with that we conclude our discussion of radioactivity. Why? Because there’s not much

to it.

Now for the final topic of importance: Population growth. Now guess what. Because we’re

dealing with living organisms, they also compound continuously. Let’s do an example:

Example 9.6: I have a population that doubles every 6 days. I initially start off with 1,000

people. How many people will there be in 12 years? Also, how long until the population triples?

(If you can’t tell, this looks very similar to the radioactive decay problem, just growth.)

Solution: As always, we begin the problem with the equation A(t) = Pert. First, we need to

solve for the actual rate.

2 = 1e6r =⇒ r =
1

6
log(2) ≈ 0.116.

Now that we have the rate, let’s find how many people there will be in 12 years. In order to do

this, we must convert the years into days.

A(10) = 1000e0.116·12·365 = 4.533× 1023.

�

Now, this doesn’t make complete sense. While we don’t have any errors in our math, we

know that we could never fit that many people on the Earth. Earth has a designated "carrying

capacity", where we couldn’t fit more people (nor would have enough resources). We define a

new equation, the logistic equation, that helps to adjust for this carrying capacity.

A(t) =
K

1 + αe−rt
.

In this case,K is the carrying capacity and α is an arbitrary constant. I’m not going to delve into
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the technicalities of how this formula works or why (because you don’t know calculus).

And with that we conclude our discussion of exponential applications. You may be wonder-

ing why there isn’t a logistic growth question here. Well that’s because these problems essentially

utilize the same method of solving. So, there’s no purpose if we’re kicking a dead horse. Now

for the next session we’re going to solve some simple logarithmic/exponential equations.

9.4 Exponential and Logarithmic Expressions and Equations

This section is going to be very example-heavy, not many words, and a lot of math. Let’s begin.

Example 9.7: Simplify log(a2).

Solution: Using the logarithmic property of power reduction, we can move the exponent to the

front. This gives 2 log(a), and we’re done. �

Example 9.8: Completely expand log(a2b3c2).

Solution: First, we can separate the arguments using the multiplication to addition property.

This gives log(a2) + log(b3) + log(c2). Then, using power reduction, we get the final answer to

be

2 log(a) + 3 log(b) + 2 log(c).

�

Example 9.9: Completely simplify log

(
5a2b3c2

d4e5

)
. Note that e is used as the fundamental

constant rather than a variable.

Solution: First, using the division to subtraction property, we get log(5a2b3c2) − log(d4e5).

Then, using the multiplication to addition property, we get

log(5) + log(a2) + log(b3) + log(c2)− log(d4)− log(e5).

Then, using the power properties, we have

log(5) + 2 log(a) + 3 log(b) + 2 log(c)− 4 log(d)− 5 log(e).

Finally, remembering that log(e) = 1 (if you don’t understand this, try evaluating it), we get the

answer as

log(5) + 2 log(a) + 3 log(b) + 2 log(c)− 4 log(d)− 5.

�

Example 9.10: Combine the logarithms 5 log(a) +
1

2
log(b)− 1

3
log(c) + 2e.

Solution: All we need to do is follow the same process in reverse. First, we need to ensure that

the final term has a log term. To do this, multiply log(e) = 1 to it (make sure you understand

why this is legal.) Moving the coefficients to the exponent gives

log(a5) + log(
√
b)− log( 3

√
c) + log(e2e).

Then, we combine the logarithms. Anything with a + sign gets multiplied, the term with the −
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sign divides. This gives

log

(
a5
√
be2e

3
√
c

)
.

�

The next thing that we need to cover is solving logarithmic equations. The most important

part here is checking the solutions. Solving the equations won’t be that hard; we just need to make

sure that the found value(s) of x are within the domain and range of the logarithmic function.

Example 9.11: Find all values of x that satisfy log(x− 2) = 2.

Solution: For problems like this, we need to isolate the logarithm. This is already done. Once

we get here, we convert this to an exponential function. This gives us

e2 = x− 2 =⇒ x = e2 + 2.

Now, to check if this answer is extraneous. Plugging this back in, we get

log(e2 + 2− 2) = log(e2) = 2,

meaning this answer is valid.�

Example 9.12: Find all values of x such that log(x− 2) + log(x+ 2) = 5.

Solution: First, we need to combine the logarithms. This is

log ((x− 2)(x+ 2)) = 5 =⇒ log(x2 − 4) = 5.

Then, we convert to exponential.

e5 = x2 − 4 =⇒ e5 + 4 = x2 =⇒ x = ±
√
e5 − 4.

Then, check to make sure both answers apply. Checking the negative root, we get

log(−
√
e5 − 4− 2) + log(2−

√
e5 − 4) = DNE.

Since the first logarithm is negative (and logarithms can’t take a negative argument), this root

doesn’t apply. For the second root,

log(
√
e5 − 4− 2) + log(

√
e5 − 4 + 2) = 5.

This works, so the only valid root is x =
√
e5 − 4. �

Now that we’ve been over some of the easy problems, we reach the harder problems.

For problems like these, most professors will ask for the exact answer and then a calculator’s

approximate answer.

Example 9.13: Find the values of x that satisfy log(x− 1)− log(x+ 1) = 12.

Solution: Combining the logarithms, we get log

(
x− 1

x+ 1

)
= 12. Converting to exponential, we

get

e12 =
x− 1

x+ 1
.

Then, we solve for x. This process is similar to taking the inverse of a rational function; multiply
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by the denominator and factor via grouping.

e12x+e12 = x−1 =⇒ (e12−1)x = −1−e12 =⇒ (1−e12)x = 1+e12 =⇒ x =
1 + e12

1− e12
.

Now to check the answer. This answer is obviously negative, meaning that it won’t satisfy the

first logarithm. That means that there’s no solution, and all that work was for nothing. �

Now, let’s change the problem a bit here. What happens when they don’t have the same

base? We need to use Change of Base! We don’t want to pick an arbitrary base; we want to pick

a base that’s some common factor or multiple of the given bases. If there’s a common factor,

choose that. If not, choose the least common multiple.

Example 9.14: Find all values of x that satisfy log2(x− 2) + log4(x+ 2) = 4. You may use a

root-finder to solve this problem.

Solution: Since the least common factor between the two bases is 2, we will change the base to

2.

log4(x+ 2) =
log2(x+ 2)

log2(4)
=

1

2
log2(x+ 2) = log2(

√
x+ 2).

Substituting this into the logarithm gives

log2(x− 2) + log2(
√
x+ 2) = 4 =⇒ log2

(
(x− 2)

√
x+ 2

)
= 4.

Re-writing this as an exponent, we get

24 = (x− 2)
√
x− 2 =⇒ (x− 2)

√
x− 2 = 16.

Now, we just need to create a polynomial by getting rid of the square root.
16

x− 2
=
√
x+ 2 =⇒ 256

x2 − 4x+ 4
= x+ 2 =⇒ 256 = x3 − 2x2 − 4x+ 8

=⇒ x3 − 2x2 − 4x− 248 = 0.

Solving this using a root-finder gives x = 7.258. This is within the domain of both logarithms,

to this is the only answer. �

This next problem is going to revert to an idea discussed in Section 5.6. The idea of Hidden

Quadratics is something that we could only briefly cover because we didn’t know how to solve

various functions that were used for the substitution. Now, we can solve the logarithmic types.

Let’s see an example.

Example 9.15: Find all values of x that satisfy log22(x− 2)− 2 log2(x− 2) = 4.

Solution: Well, seeing that there’s two log2(x − 2)’s, we think that substitution might be the

way to go. Let u = log2(x− 2). This changes the equation to something easily solvable:

u2 + 3u− 4 = 0 =⇒ (u+ 4)(u− 1) = 0 =⇒
u1 = −1

u2 = 4
.

Remember, we must solve for x and not u. Re-substituting, we have the two equations

log2(x− 2) = −1 and log2(x− 2) = 4.
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We now solve both for x.

log2(x− 2) = −1 =⇒ 2−1 = x− 2 =⇒ 1

2
= x− 2 =⇒ x =

5

2

log2(x− 2) = 2 =⇒ 24 = x− 2 =⇒ x = 18.

Since both solutions do check, our two answers are x1 =
5

2
and x2 = 18. �

For the next few problems, we will now move back to exponential equations and functions.

There are some tricky problems we can solve here; depending on the problem, we have to either

use radicals or use logarithms.

Example 9.16: Find all x such that 2x
2−4 = 256.

Solution: For these problems, our goal is to have both sides have the same base. Luckily,

256 = 28, so we can make that substitution right away. This gives

2x
2−4 = 28 =⇒ x2 − 4 = 8.

Then, all we need to do is solve for x, which gives us

x2 = 12 =⇒
x1 = −2

√
3

x2 = 2
√

3
.

�

Remark: Make sure that you understand howwe removed the bases and left the exponents. One

way to prove this is to take the logarithm base 2 of both sides. The other way is to simply recognize

that if the bases are the same and the two functions are equal, then so must the exponents.

Example 9.17: Find all x such that 2x
2+4 = 16−x.

Solution: Again, for this problem, we simplify the bases on the right side to match the left. This

gives us

2x
2+4 =

(
24
)−x

=⇒ 2x
2+4 = 2−4x =⇒ x2 + 4x+ 4 = 0.

Now, solve for x.

(x+ 2)2 = 0 =⇒ x1,2 = −2.

�

Example 9.18: Find all x such that 2x
3−3x2+3x−1 =

16x

16
.

Solution: Again, what we see is that the common base is 2. First, we combine the right side into

a singular exponent and then we change the base.

2x
3−3x2+3x−1 = 16x−1 =⇒ 2x

3−3x2+3x−1 = 24x−4 =⇒ x3 − 3x2 + 3x− 1 = 4x− 4.

Combining and solving for x (via Factor by Grouping), we get

x3 − 3x2 − x+ 3 = 0 =⇒ (x− 3)(x2 − 1) = 0 =⇒
x1 = −1

x2 = 1

x3 = 3

.

�

Example 9.19: Solve 3(8x)− 6(4x) + 2x = 0.
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Solution: We will rewrite the equation in terms of 2x and make a substitution.

3(2x)3 − 6(2x)2 + 2x = 0 =⇒ 3u3 − 6u2 + u = 0.

Then, we solve for u as normal. We get

u(3u2 − 6u+ 1) = 0 =⇒

u1 =
2

3
−
√

6

3
u2 = 0

u3 =
2

3
+

√
6

3

.

Now, we re-substitute in hopes of solving for x. We get the three equations

2x =
2

3
−
√

6

3
2x = 0 2x =

2

3
+

√
6

3
.

First, we know that there’s a horizontal asymptote at y = 0, meaning that x must be positive.

This eliminates the first and second equations, as they cannot happen. To solve the third equation,

we convert it to logarithmic.

2x =
2

3
+

√
6

3
=⇒ x = log2

(
2

3
+

√
6

3

)
.

�

With this, we continue this section on the types of exponential and logarithmic equations

that you’ll need to know how to solve. For anything that seems overly different, just follow the

same process and you’ll be sure to reach the right answer.

9.5 Graphing Exponential and Logarithmic Functions

As graphing has been a fundamental part of every chapter, we have put it for the new function.

We don’t want to completely bore you with seemingly the samematerial with a different function,

so we aren’t going to cover the rules again. For every problem, just graph it and note the domain

and range.

Because of formatting, we are going to graph these functions two at a time. This means that

we will cover two examples and then graph them. The first example will always be denoted as

f(x) and the second example will be g(x).

Example 9.20: Graph f(x) = log(x− 5).

Solution: This is a shift five units to the right of the parent function of log(x).

This means that the domain is x > 5 or (5,∞) and the range is R. �

Example 9.21: Graph g(x) = log(x− 2) + 5.

Solution: Alright, we have two noticeable changes here. First of all, we note that there is a shift
to the right by 2 units. Second, we note that there is a shift up by 5 units.

This means that the domain is x > 2 or (2,∞) and the range is still R. �

Example 9.22: Graph f(x) = 2 log(x− 3) + 5.

Solution: We have a vertical stretch by a factor of 2, a horizontal shift to the right 3 units, and a

vertical shift up by 5 units.
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x

y(x)

f(x) = log(x− 5)

x

y(x)

g(x) = log(x− 2) + 5

The domain is (3,∞) and the range is R. �

Example 9.23: Graph g(x) = 3 log(−x+ 4) + 7.

Solution: We notice that there is a flip about the y-axis, a vertical shift by 7 units up, a vertical

stretch by a factor of 3, and a horizontal shift by 4 units to the right (If this doesn’t make sense,

try factoring out a negative in the parentheses and see what happens).

The domain is now (−∞, 4) and the range is still R. �

x

y(x)

f(x) = 2 log(x− 3) + 5

x

y(x)

g(x) = 3 log(−x+ 4) + 7

Example 9.24: Graph f(x) = 2− 3 log(−x+ 4).

Solution: Before we do this, we are going to rewrite this because it’s somewhat weird the way it

is now.

f(x) = −3 log(−x+ 4) + 2.

Alright now let’s note the shifts. We have a reflection about the y-axis, a reflection about the

x-axis, a vertical shift up by 2 units, a horizontal shift to the right by 4 units, and a vertical stretch

by 3 units.

The domain is (−∞, 4) and the range is R. �

Example 9.25: Graph g(x) = 4− 3 log(−2x− 6).

Solution: Let’s rewrite this once again so we can keep track of the shifts.

g(x) = −3 log(−2x− 6) + 4.

There is a reflection about the x-axis, a reflection about the y-axis, a vertical shift up by 4 units,

a horizontal shift left by 3 units, a vertical stretch by a factor of 3, and a horizontal compression

by a factor of
1

2
.

The domain is (−∞,−3) and the range is R. �
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x

y(x)

f(x) = 2− 3 log(−x+ 4)

x

y(x)

g(x) = 4− 3 log(−2x− 6)

That’s as hard as logarithmic graphs will get. Let’s follow the same progression with

exponential functions.

Example 9.26: Graph f(x) = 6x+2 − 2.

Solution: This time, there’s a horizontal shift to the left 2 units and a vertical shift down 2 units.

The domain is R and the range moves to (−2,∞). �

Example 9.27: Graph g(x) = 3− 3x−6.

Solution: We have a horizontal shift to the right 6 units, a vertical shift up 3 units, and a reflection

about the x-axis.

The domain is R and the range is (−∞, 3). �

x

y(x)
f(x) = 6x+2 − 2

x

y(x)

g(x) = 3− 3x−6

Example 9.28: Graph f(x) = −4− 2e−x+4.

Solution: We have a vertical shift down by 4 units, a horizontal shift right by 4 units, a reflection

about the y-axis, a reflection about the x-axis, and a vertical stretch by a factor of 2.

The domain is R and the range is (−∞,−4). �

Example 9.29: Graph g(x) = 12− 1

3
e(

1
5
− 1

5
x).

Solution: As usual, we re-write these problems so it’s easier to understand.

g(x) = −1

3
e−

1
5
(x−1) + 12.

We have vertical shift up by 12 units, a horizontal shift right by 1 unit, a reflection about the

y-axis, a reflection about the x-axis, a vertical stretch by a factor of
1

3
, and a horizontal stretch

by a factor of 5.

The domain is R and the range is (−∞, 12). �
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x

y(x)

f(x) = −4− 2e−x+4

x

y(x)

g(x) = 12− 1

3
e(

1
5
− 1

5
x)

On the idea of domain and range, noting how the shifts affected the domain and range

of logarithmic and exponential functions brings out an idea regarding infinity. Note that, no

matter how much we shift the function horizontally for an exponential function, or vertically for

a logarithmic function, the domain of the exponential function, nor the range of the logarithmic

function, never changes. This is because adding a constant to infinity doesn’t change the value

of infinity. This is an idea that’s pretty important in Calculus.

We’re done with graphing exponential and logarithmic functions, which finishes the chapter.

Here are some take-away points:

The domains of exponential functions never change unless there is a restriction within the

exponent (i.e.
1

x
).

The ranges of exponential functions are only affected by reflection about the y-axis.

The ranges of logarithmic functions never change unless there is a restriction within the

logarithm (i.e.
1

x
).

The domain of logarithmic functions is only affected by reflections about the x-axis.

These problems are going to be difficult. Exponents and Logarithms bring about some of the

harder problems in Algebra. Don’t fret; give them a try!

K Chapter 9 Review Problemsk

1. Solve 256x + 8x = 3 for x.

2. Suppose the population of Wellington is 3 million at the moment. Every 10 years, the

population of the city doubles. Suppose Jupiter has 1.5 million people at the moment.

Every 5 years it doubles. Which population will be greater in 112 years’ time? By how

much?

3. Solve log(x2 − 3) = 12 loge2(x− 5) for x.

4. Find all such x that satisfy 2(x−2)
2(x−4) = 1024x.

5. Graph the following functions:

(a) f(x) = e
1
x2 (b) g(x) = log

(
x− 2

x+ 2

)
.

(c) h(x) = −4(22x−3) + 4 (d) j(x) =
1

6
log2

(
(3x− 2)2

)
− 3
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6. This question is about an investment fund.

(a) I invest $100 into a retirement fund that has an annual interest rate of 5% and compounds

annually. How much money will I have in 5 years?

(b) Suppose I invest another 100 dollars into a stock that compounds continuously at an

annual interest rate of 2%. How much money will I have in 3 months?

(c) Suppose I invest P dollars into a stock that compounds bi-weekly at an annual interest

rate of 7%. In 3 years, I have 1200 dollars. How much did I invest initially?

7. This question is about the depreciation of the legendary Nissan Altima.

(a) Suppose I have a Nissan Altima that costs $21000 that depreciates at a rate of 30%.

How much will the car be worth in 5 years?

(b) How long until the car is worth half it is now?

8. Solve a+ b log(c) = d for c in terms of a, b, and c.

9. Compute 3x, where x =
(log3(1)− log3(4)) (log3(9)− log3(2))

(log3(1)− log3(9)) (log3(8)− log3(4))
.

10. Find x such that log2(log2(log2(x))) = 2.

K Chapter 9 Challenge Problemsk

1. Simplify the following expression:
loge2(16)

log(4)
· log25(x− 2)2

log125(x
2 − 4)

· 5e.

2. Suppose I have a population that exists in an environment with a carrying capacity of 500.

After 1 day, the population is at 100. After 3 days, the population is at 150. Solve for the

corresponding logistic equation.

3. Solve 2 + log2(
√

1 + x) + 3 log4(
√
x− 1) = log8(

√
1− x2).

4. Graph f(x) = −2 logx

(
3

x−2
x−3

)
+ 5. Also, find its inverse and graph it.

5. Simplify: log2

(
1

x
× 1

x2
× · · · × 1

xn

)
− log4

(
1

x2
× 1

x4
× · · · × 1

x2n

)
− log8

(
1

x3
× 1

x6
× · · · × 1

x3n

)
.

6. The graph, G, of y(x) = log10(x) is rotated 90◦ counter-clockwise about the origin to

obtain a new graph, G′. Find an equation whose graph is G′.

7. Simplify
1

log2(100!)
+

1

log3(100!)
+

1

log4(100!)
+ · · ·+ 1

log100(100!)
,

where 100! = 100 · 99 · 98 · 97 · . . . · 2 · 1.

8. Let a ≥ b > 1. What is the largest possible value of loga

(a
b

)
+ logb

(
b

a

)
.

9. We know that logarithms can’t take in a negative argument and yield a real number. Your

goal is to find a way to input a negative logarithm argument and yield a complex answer.

In terms of n and fundamental constants, find the value of log(−n), where n ∈ R+.



Chapter 10 Further Piece-wise Functions

Contents

h Floor and Ceiling Functions

h Problem-Solving with the Floor and

Ceiling Functions

The goal of this chapter is to introduce the floor and ceiling functions, which are two rounding

functions that can be helpful for problem solving. Being able to solve problems like these will

improve your ability to solve other types of piece-wise functions.

10.1 Floor and Ceiling Functions

This section covers the floor and ceiling functions. These are two functions that you may have

never heard of before, but they can be quite useful. The goal of these functions is to input a

decimal and return the next integer less than or greater than the function.

Definition 10.1. The Floor and Ceiling Functions

♣

Given a real constant x, define the floor and ceiling function as follows:

The floor of x is the greatest integer less than or equal to x. This is also called the

greatest integer function. It is denoted by bxc.
The ceiling of x is the least integer greater than or equal to x. This is also called

the least integer function. It is denoted by dxe.

Remark: Some texts will use [x] as the floor function. We won’t do this to avoid confusion.

We will also define the fractional part of x as subtracting the integer component from x. It

is defined as x− bxc, and is denoted by {x}.
Here are some examples of the floor, ceiling, and fractional parts of x.

b3c = 3 d3e = 3 {3} = 0

b6.25c = 6 d6.25e = 7 {6.25} = 0.25

b−6.25c = −7 d−6.25e = −6 {−6.25} = 0.75

bπc = 3 dπe = 4 {π} = π − 3

Let’s consider the graphs of each of the functions. For the floor function, for all real values of

x between n and n + 1, bxc = n. This if we continue this for various integer values of n, we

get a step-like graph. This follows the same logic for the ceiling function. For the fractional

part function, it follows the step-like graph; however, it has a slope. Consider the case when

0 ≤ x < 1. In this case, y = x, meaning that there’s a slope of 1. This will continue for every
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iteration.

Below are the graphs.

x

y

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

y(x) = bxc

x

y

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

y(x) = dxe

x

y

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

y(x) = {x}

Now, let’s work with these functions to solve some problems. Most of the problems for this

section will focus on the floor function, since it’s the most common.

Example 10.1: Compute blog2(1000)c.
Solution: Let blog2(1000)c = n. This means that we can set the inequality

n ≤ blog2(1000)c < n+ 1,
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where n ∈ Z. Converting the inequality to exponential, we get

2n ≤ 1000 < 2n+1.

Since 512 = 29 ≤ 1000 < 210 = 1024, this means that n = blog2(1000)c = 9. �

Example 10.2: Find all x such that
⌊

3x+
1

2

⌋
= 7.

Solution: Because
⌊

3x+
1

2

⌋
= 7, we know that 3x+

1

2
is between 7 and 8, meaning

7 ≤ 3x+
1

2
< 8.

This is something we know how to solve. Solving this gives us

7 ≤ 3x+
1

2
< 8 =⇒ 13

2
≤ x < 15

2
=⇒ 13

6
≤ x < 5

2
.

�

Example 10.3: Find all x such that 2 < b4x− 5c ≤ 8.

Solution: Since b4x− 5cmust be an integer, we can change the lower bound to the next integer,

4. This makes the inequality 4 ≤ b4x− 5c ≤ 8. This means that 4x− 5 is a number between 4

and 9, so we can remove the floor notation and write 4 ≤ 4x− 5 < 9. Solving for x gives

4 ≤ 4x− 5 < 9 =⇒ 9 ≤ 4x < 14 =⇒ 9

4
≤ x < 7

2
.

�

The final type of problem that the floor function is used for is evaluating the approximate

value of large operations without a calculator. We will try one example of this.

Example 10.4: Evaluate
⌊

20073

2005 · 2006
− 20053

2006 · 2007

⌋
without a calculator.

Solution: We will not multiply this all out; it would take way too long and there’s too many

places to make mistakes. Instead, we will use some algebra to simplify it. If we let n = 2005,

we can write the expression in terms of n and then simplify from there.
20073

2005 · 2006
− 20053

2006 · 2007
=

(n+ 2)3

n(n+ 1)
− n3

(n+ 1)(n+ 2)
=

(n+ 2)4 − n4

n(n+ 1)(n+ 2)

=
8n3 + 24n2 + 32n+ 16

n(n+ 1)(n+ 2)
=

8(n+ 1)(n2 + 2n+ 2)

n(n+ 1)(n+ 2)

=
8(n2 + 2n+ 2)

n(n+ 2)
=

8n(n+ 2) + 16

n(n+ 2)

= 8 +
16

n(n+ 2)

We’ve made significant process! Now, what to do with the
16

n(n+ 2)
term? Well, at n = 2005,

we know that 0 <
16

n(n+ 2)
< 1, meaning that⌊

20073

2005 · 2006
− 20053

2006 · 2007

⌋
= 8.

�

Those are the basic problems that you’ll experience when it comes to the floor function.

Now, let’s look at some harder problems using the same methods.
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10.2 Problem-Solving with the Floor Function

The goal of this section is to over various approaches when it comes to the floor function. These

aren’t new techniques, but rather are different ways of looking at harder problems using the same

techniques.

Example 10.5: Find all values of x such that x+ bxc = 6.7.

Solution: The easiest way to do this is to split the answer into two parts (the integer and the

fractional part). We know that the only way to get the 0.7 part of the answer is from the x,

meaning xmust have 0.7 in it. That leaves the integer component of x and bxc. Since both must

be the same, we know that bxc = 3. This means that x = 3.7.

If you don’t understand how that works, note that x = bxc + {x}. This way, we get

2bxc+ {x} = 6.7, which makes x = 3.7 by splitting the equation. �

Example 10.6: Find all real numbers x such that bxc = 5x− 14.

Solution: Again, for this one, we will use the idea that x = bxc+ {x}. This gives us

bxc = 5bxc+ 5{x} − 14.

Solving for {x}, we get
{x} =

14− 4bxc
5

.

Since 0 ≤ {x} < 1, we have 0 ≤ 14− 4bxc
5

< 1. Solving this for x gives us

0 ≤ 14− 4bxc < 5 =⇒ 9

4
< bxc ≤ 7

2
.

The only integer on the interval is 3, meaning that bxc = 3. Therefore, {x} =
14− 4 · 3

5
=

2

5
.

Thus, x = bxc+ {x} =
17

5
= 3.4. �

For the final problem in this chapter, we are going to do a summation. Don’t be alarmed;

this is not a difficult problem. We just need to understand what we are adding and find a way to

evaluate an equivalent sum that’s easier to add.

Example 10.7: Find
99∑
k=1

⌊√
k
⌋
.

Solution: Let’s expand the summation to take a look at what we are adding:
99∑
k=1

⌊√
k
⌋

=
⌊√

1
⌋

+
⌊√

2
⌋

+
⌊√

3
⌋

+
⌊√

4
⌋

+
⌊√

5
⌋

+ · · ·+
⌊√

99
⌋
.

The first way to do this is brute force. We know that
⌊√

1
⌋

= 1,
⌊√

2
⌋

=
⌊√

3
⌋

= 1. The next

term is then
⌊√

4
⌋

=
⌊√

5
⌋

=
⌊√

6
⌋

=
⌊√

7
⌋

=
⌊√

8
⌋

= 2, and then
⌊√

9
⌋

= 3.

There is a clear pattern here. We first notice that we can solve this by counting the number

of values between the perfect squares and then multiply by their floor function (since they’re all

the same). This is the simple way to do it. We are going to follow this method but provide a

more mathematical explanation.

Our goal is to find all integers k such that
⌊√

k
⌋

= m, where m is a positive integer.
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This means that m ≤
√
k < m + 1, so m2 ≤ k < (m + 1)2. Counting the number of

integers in this list, k must be one of m2, m2 + 1, m2 + 2, . . ., (m + 1)2 − 1. There are

((m + 1)2 − 1) − (m2) + 1 = 2m + 1 integers in this list. These integers are then multiplied

bym. There are 9 perfect squares in the range, meaningm ranges from 1 to 9.

This means that we can rewrite the given summation as

S =

99∑
k=1

⌊√
k
⌋

=

9∑
m=1

m(2m+ 1).

Evaluating the sum by plugging in each value ofm, we get

S = 3 + 10 + 21 + 36 + 55 + 78 + 105 + 136 + 171 = 615.

�

This is all we have to cover. This chapter was somewhat on the short side; we reviewed one

function and introduced another. Although you won’t see the floor function as often in regular

mathematics classes, it’s a good skill to know how to use and implement. Courses that focus on

competition preparation will go into much greater detail on these functions.

K Chapter 10 Review Problemsk

1. Simplify
∣∣∣x−√(x− 9)2

∣∣∣ for all x < 0.

2. Show that dxe = −b−xc for all x ∈ R.

3. Find f−1(x) if f(x) = x|x|+ 2.

4. Find all constants c such that |cx− 1|+ |x2 − x− 2| = 0 has a solution in x.

5. Let a and b be distinct real numbers. Find x in terms of a and b such that |x−a| = |x− b|.

6. Find all ordered pairs (x.y) such that |x|+ |y| = 10 and xy = 24.

7. Let a, b, and c be real numbers such that |a| = |b − 2|, |b| = |c − 2| and |c| = |a − 2|.
Prove that a+ b+ c = 3.

8. Determine whether the following functions are continuous. Then, determine if the function

has an inverse; if so, find it.

(a) f(x) =

4x x < 5

5/x x ≥ 5
. (b) g(x) =

2x x < 2

2x x ≥ 2
.

9. Evaluate
⌊
log2
√

999
⌋
without the use of a calculator.

10. How many ordered triples of integers (a, b, c) satisfy |a+ b|+ c = 19 and ab+ |c| = 97?

11. Find the values of x that satisfy
⌊√

2x− 7
⌋

= 9.

12. Find all integers x such that bx/6c = 5.
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13. Compute
⌊√

n2 − 10n+ 29
⌋
when n = 20252025.

14. Find all values of x such that 7x+ b2xc = 52.

K Chapter 10 Challenge Problemsk

1. Find all real values of x such that
⌊∣∣−x2 + 10x− 16

∣∣⌋ = 1.

2. Find
{
√

3}2 − 2{
√

2}2

{
√

3} − 2{
√

2}
without a calculator.

3. Graph f(x) = bxc+ dxe and g(x) = dxe − bxc.

4. Find the largest real positive number δ such that |
√
x− 2| < 0.1 if |x− 4| < δ.

5. Let Sn = b1c+ b2c+ b3c+ · · ·+ bnc where n ∈ Z. Find the largest value of k < 2021

such that S2021 − Sk is a perfect square.

6. What positive, real number x has the property that x, bxc, and x− bxc form a geometric

progression?

7. Find the domain of f(x) =

√
64− x2

4
√

16− |2x+ 5|
.

8. Find the smallest real number x such that
x

bxc
=

2002

2003
.

9. Graph f(x) = b2xc+ b4xc+ b6xc+ b8xc.

10. The function f is defined on Z and satisfies

f(n) =

n− 3 n ≥ 1000

f(f(n+ 5)) n < 1000
.

Find f(84).

11. Define f(n) by n/2 if n is even

(n+ 1023)/2 if n is odd
.

Find the least positive integer such that f(f(f(f(f(n))))) = n. (HINT: Experiment with

small values of n. Also, use the fact that there are lots of 2’s. How could we go about

writing n to make this problem easier?)
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This chapter is going to discuss systems of equations. We are going to coverwhat linear system are

and how to solve them. A natural extension from covering the math of a given linear relationship

is to ask what it would mean to have more than one. This idea is extremely applicable to the real

world − many problems needed to be solved have more than one relationship which needs to

hold; these “requirements” lend themselves naturally to multiple equations, of which are often

linear.

Remark: A linear system of equations is a set of multiple linear equations. The “solution” can

be thought of as asking “for what values do all of these equations in the system hold?”

11.1 Solutions to Systems via Graphing

Three different methods will be taught to find the solution to a given system. We’ll start

with arguably the easiest to understand: graphing. Looking for the solution to a system − when

all of the (linear) equations hold − is the same as searching for a set of values which lie on the

graphs of each equation.

x

y(x)

(−1, 1)

Let’s look at an example where we have two variables

(so we can graph in the Cartesian plane) and two equation:

Example 11.1: Find the solution to

2x− y = −3

x+ y = 0
via

graphing.

Solution: Remember, we want to find a value or set of values

which lie on both lines; this is essentially asking to find the

intersection point of the two lines.

Based on the graph to the right, we can see that (−1, 1)

is our solution to the system. Let’s check our answer by
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plugging these coordinates back into the original equations.

EQN 1: 2(−1)− (1) = −3

EQN 2: (−1) + (1) = 0

�

Remark: Graphing to solve systems is rarely used as it can be inaccurate if it is done by hand.

x

y(x)

We won’t spend too much longer on this topic, but we

considered it important to cover the solution to a non-linear

system. Take a look at the example below.

Example 11.2: Solve the system


2x2 + 3x+ 1 = y

1− 1

y
= x

via

graphing. You may use a graphing calculator for this prob-

lem.

Solution: Our goal is to find the intersection point(s) between
the two graphs shown. Looking at the graph to the right, we

see that there are three intersection points between these plots.

We can find these using a graphing calculator or via algebra.

To solve this algebraically, use substitution to have an

equation in terms of y and solve. We encourage you to try this on your own, but we will not

show this method.

Most students will be solving with a TI-84 Calculator. Using the graphing menu, we plot

both functions (solve the bottom function for y first). Then, using the intersect feature, we find

the three intersection points to be

(−1.281, 0.438) (0, 1) (0.781, 4.562).

�

With that done, let’s move on to a more accurate solution: substitution.

11.2 Solutions to Linear Systems via Substitution

Substitution, a more algebraic method that works very well in linear equations, involves

taking on of the equations and isolating a variable; this isolated variable can then be substituted

into the other equation(s) where standard algebra can then solve the rest.

Let’s run through the different cases of this so you’re prepared for everything.

Example 11.3: Solve the system of equations

x+ y = 4

3x− 2y = 2
via substitution.

Solution: The first thing we need to do is isolate a variable from one of the equations. In this

case, the first equation is easier to do this. We choose to isolate y; however, this is your choice.

We get that y = 4− x.
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Now, we plug this into the second equation. This gives

3x− 2(4− x) = 2 =⇒ 3x− 8 + 2x = 2 =⇒ 5x = 10 =⇒ x = 2.

Then, plug this back into one of the equations to solve for y.

(2) + y = 4 =⇒ y = 2.

This means that the solution, written as an ordered pair, is (2, 2). This can be verified via

graphing if you choose; we won’t show it. �

In this case, the solution was an ordered pair. But we obviously know that there are cases

where this may not be true. Let’s look at another case.

Example 11.4: Solve the system of equations

2x− y = 4

4x− 2y = 3
via substitution.

Solution: It seems easiest in this case to solve the first equation for y. Doing this makes

2x− y = 4 =⇒ 2x = y + 4 =⇒ 2x− 4 = y.

Then, plug this into the second equation.

4x− 2(2x− 4) = 3 =⇒ 4x− 4x+ 8 = 3 =⇒ 8 = 3.

We know this not to be true. This must mean that there is no solution. �

Remark: In upper-level math courses, it is most common to label problems with no solutions

as DNE, which stands for (the solution) Does Not Exist.

One way we could have quickly verified this solution is simplifying the second equation.

Dividing by 2, we would’ve gotten 2x−y =
3

2
. We know this can’t be equal to the first equation;

thus, it has no solutions.

Let’s look at one final case that’s not so obvious.

Example 11.5: Solve the system of equations

−x− y = 2

2x+ 2y = 4
via substitution.

Solution: It might be easier in this case to use the second equation to avoid the use of negative

signs. Solving for x in this case, we get

2x = −4− 2y =⇒ x = −2− y.

Plugging this into the first equation gives

−(−2− y)− y = 2 =⇒ 2 + y − y = 2 =⇒ 2 = 2.

This is true no matter what, which means that the system has infinite solutions. �

We also might note that in this case, both equations were technically the same. Multiplying

the top equation by −1 and the bottom by
1

2
yields x + y = −2 for both. This means that they

represent the same line; thus, there are infinite solutions.

Every point on this line will produce a solution to the system, for this reason there are

infinite solutions to this specific system. Therefore, the solution to the system can be written as
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follows:

y = −x− 2, x ∈ R.

Writing it like this allows us to classify the types of solutions, since obviously not all pairs work.

Remark: This is how all infinite solutions should be written. It lets the grader know that there

is a classification of solution. Write it in terms of a dependent variable and define the domain of

the independent variable.

These are the necessary sections that we need to cover. Now let’s discuss a better method

for solving linear systems if it’s not easy to isolate a variable: elimination.

11.3 Solutions to Linear Systems via Elimination

The goal of this section is to provide a method in which you don’t need an isolated variable.

When coefficients start growing, you’ll be left with messy fractions when you use substitution;

however, using elimination will help to fix this.

Elimination is the process of finding the least common multiple between the same variable

in both equations and transforming them such that they then have the same coefficient. Then,

using basic inspection, we solve for the other variable.

This is a little tough to explain without looking at some examples. Let’s try a few.

Example 11.6: Solve the system

6x− 3y = 3

2x+ y = −5
using elimination.

Solution: Let’s consider each example using some intuition. The first equation has a common

factor of 3, so let’s remove it. This gives 2x− y = 1 for the new first equation. We see that both

x and y have the same magnitude in these equations, yet y has an opposite sign. In this case, we

will add both equations together to eliminate y. This leaves 4x = −4, meaning x = −1.

To solve for the other variable, plug it into one of the equations. We’ll use the second. This

means that

2(−1) + y = −5 =⇒ −2 + y = −5 =⇒ y = −3.

�

Remark: We could’ve eliminated x instead of y and we would’ve received the same answer.

Instead of adding both equations to eliminate y, wewould’ve subtracted the equations to eliminate

x. Note that this is not always true; this happened out of coincidence.

Let’s look at a similar example that requires one extra step.

Example 11.7: Solve the system

−2x+ 3y = 5

5x+ 4y = 8
using elimination.

Solution: We see that in this case, there is no obvious first step. We know that we must eliminate

one of the variables by determining the least common multiple; however, there isn’t an easy

choice. In this case, and in all other cases, we will choose the variable with opposite signs for
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coefficients. Thus, we choose x as the variable to eliminate.

The least common multiple between 2 and 5 is 2 · 5 = 10. To get there, we multiply the top

equation by 5 and the bottom equation by 2. This makes the new system−2x+ 3y = 5

5x+ 4y = 8
=⇒

−10x+ 15y = 25

10x+ 8y = 16
.

Since the x-coefficients are the same, we add the equations. This yields the resultant equation

23y = 41, meaning y =
41

23
. Plugging this back into one of the equations to solve for x (we will

use the second equation), we get

5x+ 4

(
41

23

)
= 8 =⇒ 5x+

164

23
=

184

23
=⇒ 5x =

20

23
=⇒ x =

4

23
.

This makes the solution of the system
(

4

23
,
41

23

)
. �

Remark: If both variables have coefficients of the same sign, then choose the one with the

smaller least common multiple. If this isn’t terribly obvious, choose the ones with the smaller

coefficients.

Now, let’s discuss the process of solving larger systems.

11.4 Larger Systems of Linear Equations

This section is going to look at systems with more equations and more coefficients. In this

section, most problems will have a variable with a subscript (ex: x1 and x2) to represent the

independent variables. It often becomes confusing to introduce too many letters of the alphabet,

so we use this system instead.

Often, problems like this can be tedious to solve for every variable and can be sometimes

annoying to write down all the solutions. To avoid this, some problem writers will choose to

ask you to give your answer as an expression in terms of these variables. However, there are

times when we can find this value without ever solving for one or more of the variables. We will

discuss how this happens later in this section.

Now, we will try to solve a 3× 3 system of equations (this means there are 3 variables and

3 equations).

Example 11.8: Solve the system of equations


−2x+ y + z = 4

−x+ y − z = 3

x− y = −1

using a method of your

choice.

Solution: We quickly note that graphing seems like a bad idea, as we would have to graph in

three-dimensional space. Since we don’t know how to do that yet, and you won’t learn until

Calculus 3, we aren’t going to worry about it.

Substitution doesn’t seem like a bad idea in this case, especially with the third equation. If
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we solve for x in terms of y (or vice versa), we can plug this into the other equations and reduce

it down to a 2 × 2 system. From the third equation, we have x = y − 1. Plugging this into the

other equations we have−2(y − 1) + y + z = 4

−(y − 1) + y − z = 3
=⇒

−2y + 2 + y + z = 4

−y + 1 + y − z = 3
=⇒

−y + z = 2

−z = 2
.

We quickly find that z = −2 and start plugging this back into the other equations. Plugging

this into −y + z = 2, we get y = −4. Plugging y into the original substitution, we get

x = −4− 1 = −5.

We write the solution as an ordered triple, so the solution is (−5,−4,−2). �

Let’s try another example with a 3× 3 system.

Example 11.9: Find the solutions x1, x2, and x3 that satisfy


x1 + x2 + x3 = 6

x1 + 2x2 + 3x3 = 14

2x1 + 5x2 + 8x3 = 36

.

Solution: Again, graphing isn’t a plausible solution. Substitution could be done but elimination

is a better option. In problems like this, we want to eliminate one variable (the same variable)

from two of the three equations. In this case, we will eliminate x1. To do this, we subtract

equation 1 from equation 2, and then subtract twice equation 1 from equation 3. Mathematically,

this looks like

EQN 1− EQN 2 : (x1 + x2 + x3)− (x1 + 2x2 + 3x3) = (6)− (14) =⇒ −x2 − 2x3 = −8

2EQN 1− EQN 3 : 2(x1 + x2 + x3)− (2x1 + 5x2 + 8x3) = 2(6)− 36

=⇒ −3x2 − 6x3 = −24 =⇒ −x2 − 2x3 = −8.

We see that we got the same equation twice! That means that we have a dependent system where

there are infinite solutions. Like the example in Section 11.2, we must find a solution in terms of

other variables.

We can quickly see that x2 = 8 − 2x3. Let’s solve for x1 in terms of x3 using the first

equation. This gives

x1 + (8− 2x3) + x3 = 6 =⇒ x1 − x3 = −2 =⇒ x1 = x3 − 2.

So, in this case, we write the solution as (x3 − 2, 8− 2x3, x3), x3 ∈ R. �

This doesn’t always happen. There is a case, however, where it is obvious that there will be

a parameter. This is when there are less equations than the number of variables. There is no way

to solve for more variables than there are equations, meaning we must write the answers in terms

of other variables. This will be showcased in the review problems.

Remark: You may be wondering: what happens if there are more equations than variables?

This is a great question that leads to a similar answer. There are a few possibilities here: all the

systems could work out and leave one system. Or, one of the equations could simply be repetitive

(whether it be a multiple of one of the equations, the sum of two other equations, etc.), which
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leaves it no value and can be ignored. Otherwise, the equations won’t work together (this is the

most common) and leads to no solutions.

Often, for systems of equations with more than three variables, elimination is the best

method. This is usually since there isn’t an equation only in terms of two variables. To solve

these, try to reduce the system to 3×3 with the least number of operations, and solve from there.

The goal is to always reduce one variable at a time until you reach the 2 × 2, which is easily

solvable.

Now, let’s discuss the final type of larger system that there might be: when the question asks

for an answer in terms of other variables. This is somewhat common if there are less equations

than variables, but is also seen when there are as many equations as variables.

Example 11.10: Find x− y + z if 3x− y + 5z = 44 and x+ 2z = 12.

Solution: We see that we have more variables than equations, so we either have to find each

variable in terms of another or we can find x− y + z head-on. Let’s work on getting there one

variable at a time, starting with x. Subtracting twice equation 2 from equation 1, we get

(3x− y + 5z)− 2(x+ 2z) = (44)− 2(12) = x− y + z = 20.

Turns out, we made it without any extra work! So the answer is 20. �

These are the types of larger systems of equations. Note that there wasn’t much new in this

section - we simply used what we knew and applied it in a larger scenario. Now, let’s move on

to non-linear systems, where we will have to slightly modify our methods to solve them.

11.5 Solutions to Non-Linear Systems

This section is going to involve a lot of substitution. Substitution will serve as the best

method for nearly every problem in this section and the next section. Most problems here will

be 2× 2 systems. Our goal is to combine the equations such that we have an equation we know

how to solve - a high percentage of them will be quadratics (or hidden quadratics).

The best way to learn to solve these is by example. Let’s get started.

Example 11.11: Solve the system of equations


x− y = 3

1

x
+

1

y
=

1

2

using substitution.

Solution: Substitution will be much easier with the top equation. We see that x = y + 3, so we

plug that into the bottom equation. Doing this and simplifying, we get
1

y + 3
+

1

y
=

1

2
=⇒ 2y + 3

y(y + 3)
=

1

2
.

Cross-multiplying gives us the equation

2(2y + 3) = y2 + 3y =⇒ 4y + 6 = y2 + 3y =⇒ y2 − y − 6 = 0.

This is a simple quadratic we can factor to solve. This gives (y− 3)(y+ 2) = 0 =⇒
y1 = −2

y2 = 3
.
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Before we continue, we need to make sure that both of these solutions are valid. The only

way they couldn’t be valid is if y = 0, which isn’t true; thus, they are both valid.

Now, we plug them back into the first equation (the easier equation) to solve for x. This

gives
x1 + 2 = 3 =⇒ x1 = 1

x2 − 3 = 3 =⇒ x2 = 6
. Thus, our two solutions are (1,−2) and (6, 3). �

Let’s look at an example where elimination may be the better choice.

Example 11.12: Find all solutions (x, y) such that

x
2 + xy = 126

x2 − xy = 36
holds true.

Solution: In this case, we want to remove the xy term, and we can do this very easy via adding

the two equations. Doing this gives us 2x2 = 162, meaning that x2 = 81. We get two solutions:

x1 = −9 and x2 = 9.

Quickly checking that there are no domain restrictions, we then move on to find y. Plugging

in the values of x into the top equation, we get
81− 9y = 126 =⇒ y = −5

81 + 9y = 126 =⇒ y = 5
. This means that

our two solutions are (−9,−5) and (9, 5). �
�

Important: Something you should always do after every problem is check the solutions to

make sure that they’re valid. We haven’t been doing this throughout the problems to maintain

the brevity of the solutions; however, it is important you practice this in the review problems.

There are quite a few types of these and they all encompass the same methodology. Thus,

we aren’t going to show any more examples. When you encounter problems like this, we urge

you to follow one of two ideas: (1) use elimination to get rid of the non-linear terms or convert

it to something you can eliminate (such as a perfect square trinomial), or (2) use substitution to

get rid of a variable and solve the for the other.

Now, let’s expand on the idea of substitution to simplify the system.

11.6 Solutions Non-Linear Systems via Substitution

Throughout this chapter, we’ve covered the most basic use of substitution. The goal of this

substitution was to simplify the equation into a single-variable linear equation. In this case,

however, we are going to typically make two substitutions to make a system of equations that’s

easier to understand. Let’s look at the easiest type.

Example 11.13: Find all pairs (x, y) such that

x+ y +
√
x+ y = 30

x− y +
√
x− y = 12

is satisfied.

Solution: In this case, there is no simple way to isolate x or y, and even if we add them, the

square root terms will still be there. To fix this, we need a way to get rid of the square root terms.

So, to fix this, we introduce two new variables. We assign u =
√
x+ y and v =

√
x− y.

Doing this allows us to remove the square roots from both equations and be left with
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two quadratic equations. We now have the system

u
2 + u = 30

v2 + v = 12
. Since the equations are

independent of one another (they don’t share variables), we solve each individually.

The solutions to the first equation are u = −6 and u = 5. The solutions to the second

equation are v = −4 and v = 3. Remember that u and v both represent square root quantities,

so neither can be negative. Thus, we are left with u = 5 and v = 3. Substituting the values

of u and v, we get


√
x+ y = 5

√
x− y = 3

. We can easily square both sides to get

x+ y = 25

x− y = 9
.

Solving both equations using basic elimination gives (x, y) = (17, 8). �

Let’s try a different style of problem that still encompasses the same principle as the previous

problem.

Example 11.14: Solve
√

3x2 − 4x+ 34 +
√

3x2 − 4x− 11 = 9 for x.

Solution: The first thing you might be wondering is why this is in the Systems of Equations

chapter. It’s not a system! What we’ll find out is that making a substitution like this will create a

small system that we have to solve. It won’t be tough but it’s part of the process.

Let’s let a =
√

3x2 − 4x+ 34 and b =
√

3x2 − 4x− 11. This means that a + b = 9.

Let’s take advantage of the fact that a and b only differ by a constant. Squaring both terms and

subtracting, we get

a2 − b2 = (3x2 − 4x+ 34)− (3x2 − 4x− 11) = 45.

So, we now have the system

a+ b = 9

a2 − b2 = 45
. Factoring the bottom and substituting the top

equation, we get (9)(a− b) = 45 =⇒ a− b = 5. This reduces the system to

a+ b = 9

a− b = 5
.

We can easily solve this to get (a, b) = (7, 2). It doesn’t matter which we use, so we’ll use the

second. This gives

b =
√

3x2 − 4x− 11 = 2 =⇒ 3x2−4x−11 = 4 =⇒ 3x2−4x−15 = 0 =⇒
x1 = −5/3

x2 = 3
.

�

Let’s try one that uses elimination to manipulate the equations into something solvable.

Example 11.15: Find all solutions to the system of equations

2x2 + 3y2 − 4xy = 3

2x2 − y2 = 7
.

Solution: We are going to do a style of elimination that eliminates the constants rather than the

variables. Thus, in this case, we are going to subtract three times the bottom equation from seven

times the top equation. This gives

7(2x2 + 3y2 − 4xy)− 3(2x2 − y2) = 7(3)− 3(7) =⇒ 8x2 + 24y2 − 28xy = 0.

Dividing by four on both sides gives 2x2− 7xy+ 6y2 = 0. This is something that we can factor.
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This factors to (2x − 3y)(x − 2y) = 0. This means that x =
3

2
y or x = 2y. Plugging x = 2y

into the bottom equation gives the solutions (x, y) = (2, 1) and (x, y) = (−2,−1). Letting

x =
3

2
y gives (x, y) =

(
3

2

√
2,
√

2

)
and (x, y) =

(
−3

2

√
2,−
√

2

)
. �

Remark: There are other solutions to this problem, but we felt that this was the most simple

to understand. Another solution involves removing the 2x2 term from both equations as it’s the

term they have in common.

If you don’t understand how we factored the multi-variable function, consider making

another substitution. If you divide both sides by y2 and let z =
x

y
, it will reduce to a uni-variate

quadratic that you can solve using any method from Chapter 5.

There isn’t much more to cover in this section. When you are given a non-linear system,

consider whether it may be easier to substitute to simplify. Other times, you must substitute;

otherwise, there won’t be a way to isolate one of the other variables or eliminate it. Consider the

use of eliminating constants, as sometimes it’s the easiest way to solve.

You now have many tools in your repertoire to solve different types of systems. As you

traverse through these practice problems, try and think of the easiest method of solving these

rather than the first that comes to mind, as there is almost always an easier way.

K Chapter 11 Review Problemsk

1. For each system, solve using the indicated method.

(a)

2x− 5y = −2

−3x+ 7y = 4
[elimination] (b)

5x− y = −1

−9x+ 2y = −2
[substitution]

(c)

−3x+ 2y = 2

−5x+ 3y = 0
[elimination] (d)

4x+ 2y = −6

−3x+ 3y = 18
[graphing]

(e)

6x− 3y = 9

4x+ 2y = 18
[substitution]

2. For each part, determine whether the system of equations has 0, 1, or infinite solutions

without any manipulation.

(a)

2x− 3y = 6

−6x+ 9y = −18
(b)

2x− 8y = 4

−x+ 4y = −5

3. Solve the following systems using a method of your choice.

(a)


2x− 7y + 2z = 3

x+ 4z = 1

x− 6y − z = 2

(b)


x+ y − 2z = −2

−y + 3z = 1

4x+ y + 2z = −4

(c)


−5x+ y + 3z = 2

3x+ 3y = −3

2x+ 4y + z = −3

4. Find all pairs (x, y) such that

xy = 1

y = x+ 1
holds true.
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K Chapter 11 Challenge Problemsk

1. Solve the system

4x+ y + z = 1

2x− y + z = 3
using a method of your choice.

2. Determine the geometric shape produced by ax + by + cz = d where a, b, c, d ∈ R.

(HINT: the intersection between two of these objects must be a line.)

3. For what values of k does the system of equations


kx+ y + z = k

x+ ky + z = k

x+ y + kz = k

have no solution,

infinite solutions, and exactly one solution?

4. Solve the system


−2x+ 3y − z = −2

4x− 6y + 2z = 4

−4x+ 6y − 2z = −4

using a method of your choice.

5. Find all solutions to the linear piece-wise functions f(x) =

2x+ 2 x < 2

x

2
+ 4 x ≥ 2

and g(x) =

3x− 6 x ≥ 0

−6 x < 0
. (HINT: Graphing may be a good option this time.)

6. Find a set of functions f(x, y), g(x, y), and h(x, y) and constants k1, k2, and k3 such that

the solution to the system


f(x, y) = k1

g(x, y) = k2

h(x, y) = k3

has its only solution at (−1, 2).

7. Solve the system



3y + z − 8w = 1

−2x+ 2y − w = −1

x+ 4y − z + 3w = 2

3x+ 5y − z + 2z = −1

using a method of your choice.

8. Show that for any system

f(x) = ax+ b

f−1(x)
where a, b ∈ R, the solution to the system

either has no solution or it must lie on y(x) = x.

9. Find the area of the region of points that satisfy the system



y > x

x > −x

y < x+ 8

y < −x+ 8

.
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10. Find all ordered pairs of real numbers (x, y) that satisfy


x2 + xy = 35

y2 + xy = 14

x− y = 3

.

11. Find all ordered pairs of real numbers (x, y) that satisfy

x
3 − 4y3 = 4

3y3 − x2y + xy2 = 1
.
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Well, here we are, trigonometry−what for many Americans is the summit of their mathematical

adventure. To keep things relatively simple, we will only be providing an introduction into the

field, as the full extent of it will be covered later on during your time in Pre-calculus. Technically,

trigonometry is the study of triangles, coming from the roots "tri" for 3 (sides/angles) and “metry”

meaning to measure. In practice, however, trigonometry more often involves the study of certain

trigonometric functions which enable greater understanding of both triangles and a wide variety

of other applications. As you will soon find out, to understand and intuit in place of memorize,

trigonometry will often require of you a certain flexibility− to be able to quickly switch between

algebraic and geometric perspectives.

12.1 The Trigonometric Functions

We’ll start with the very basics. First, since this chapter is about trigonometry, let’s look at some

simple cases of triangles. Let’s say we have a right triangle and we know one of the (non-right)

angles. For the sake of simplicity, let’s also assume we know the hypotenuse has a length of one.

Below are some cases of the above situation: In these examples, it would be incredibly difficult

27◦ 40◦ 45◦

(if not near impossible) to calculate the length of the other two sides of the triangle. So, in an

attempt to make some progress, let’s create some functions f(θ) and g(θ) to help us with these

cases. f(θ) will take the known angle θ as an input to the function and output the length of the

side of the triangle opposite the angle θ; likewise, g(θ) will take the known angle θ as an input

and output the length of the side of the triangle adjacent the angle θ.

We can observe the general case for this situation below with the known angle θ and lengths

1, f(θ),and g(θ):
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f(θ) 1

g(θ)

θ

g(θ) 1

f(θ)

θ

Now it just so happens that these functions are useful enough to where mathematicians

have given these two functions special names. f(θ), the length of the side opposite the angle, is

denoted by sin(θ); g(θ), the length of the side adjacent the angle, is denoted by cos(θ).
�

Important: From here on, sin(θ) and cos(θ) will be used in place of f(θ) and g(θ). All

trigonometric functions will take θ to be in radians instead of degrees.

Now that we have all the setup in place, let’s try and calculate some simple cases of sin(θ)

and cos(θ). While you may not be expected to derive some of these without having seen the

proof beforehand, it is recommended that you understand them regardless.

Example 12.1: Using principles of geometry, calculate sin(0) and cos(0).

Solution: Consider the left triangle above. As θ approaches 0, we see that f(0) = sin(0)

approaches 0. Using the Pythagorean Theorem (or similar logic to sin(θ) we see that g(0) =

cos(0) approaches 1. �

Here are the figures for the next two problems. Due to spacing limitations, we were forced

to put them above.

A 1

B

θ

φ

C 1

D

φ

θ

Example 12.2: Using principles of geometry, calculate sin
(π

4

)
and cos

(π
4

)
.

Solution: Consider the triangle to the right. We know that the sum of the angles in a triangle

must add up to 180◦ (or π), so we know that θ = φ =
π

4
. This also tells us that A = B (from

one of those theorems from Geometry − it says that side lengths are proportional to their angle

measure).

Using the Pythagorean Theorem, we can say the following:

A2 +B2 = 1 =⇒ A2 +A2 = 1 =⇒ A2 =
1

2
=⇒ A =

√
2

2
.
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This means that we can conclude that

sin
(π

4

)
= cos

(π
4

)
=

√
2

2
.

�

Remark: Note that in the example above we didn’t accept the negative solution forA. We can’t

have negative lengths.

Example 12.3: Using principles of geometry, calculate sin
(π

6

)
and cos

(π
6

)
.

Solution: Based on the diagram to the right, let’s set φ to equal π6 . Then, we know sin
(π

6

)
= D

and cos
(π

6

)
= C.

Since all angles in the triangle must add to π, we calculate θ to be θ =
π

2
− π

6
=
π

3
.

Here’s where the clever trick gets involved, notice how 2φ = θ. This fact allows us to

leverage some symmetry. The “trick” for this problem is to add a second triangle to the diagram

as shown below.

θ θ

φ φ

2D

11

→

θ

θ θ
2D

11

By adding on a second triangle we can form one larger triangle with equal angles, an

equilateral, and therefore we know all of the side lengths must be equal. This means that

2D = 1, or D =
1

2
.

Since we know two out of the three side lengths of the original triangle, we can use the

Pythagorean Theorem again.

C2 +

(
1

2

)2

= 1 =⇒ C2 =
3

4
=⇒ C =

√
3

2
.

We can use the definitions for C and D established above to say that sin
(π

6

)
=

1

2
and

cos
(π

6

)
=

√
3

2
. �

What if we have a right triangle with a hypotenuse not equal to 1 and we want to know the

lengths of the other sides? Well, we can use a simple property regarding similar triangles.

Since these two triangles share all the same angles, we automatically know the triangles

are similar to each other. This is seen in the figure to the left at the top of the next page. One

property of similar triangles is that equivalent sides are proportional:

a

1
=

b

sin(θ)
=

c

cos(θ)
=⇒

b = a · sin(θ)

c = a · cos(θ)
.

Substituting in these values for the leg side lengths, we see that each leg is scaled by the length

of the hypotenuse. This is seen in the figure on the right.
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θ

cos(θ)
c

a

1

b

sin(θ)

→

θ

a cos(θ)

a

a
si

n
(θ

)

We can now create our formal definitions for sin(θ) and cos(θ) using the substitutions we

made. We see that

sin(θ) =
b

a
=

opposite
hypotenuse

cos(θ) =
c

a
=

adjacent
hypotenuse

.

We have four more functions you need to know. These, however, are much easier to learn

about as they all are simple combinations of the sine and cosine functions.

Let’s start with tan(θ) (short for "tangent"). By definition, tan(θ) =
sin(θ)

cos(θ)
. In addition to

this algebraic definition, the tangent function may also be defined geometrically. The tangent of

an angle can be found by taking the ratio between the opposite and adjacent legs of the triangle:

tan(θ) =
opposite
adjacent

.

Remark: the length of the hypotenuse does not matter when calculating the tangent (it does

with Sine and Cosine, which will be covered in section 13.2).

The final three functions are the reciprocals of the first three: cosecant the reciprocal of

sine, secant of cosine, and cotangent of tangent.

csc(θ) =
1

sin(θ)
sec(θ) =

1

cos(θ)
cot(θ) =

1

tan(θ)
.

While these three tend to have less applications, they are certainly useful as a shorthand in

place of writing out the reciprocals whenever they come up.

12.2 The Unit Circle

x

y(x)

(x, y)

It is often said that when you start out in trigonometry you think it’s

all about triangles, but in actuality, it’s all about circles.

In this section we are going to flesh out a more useful definition

to the sine and cosine functions to that of the previous one based on

the length of a triangle’s side. The first thing we want to improve

with our new definition is to be able to extend the domain of each

function. With the triangle definition we couldn’t reasonably define

a value to sin

(
3π

2

)
or cos(10π), that would imply it is possible to

have a right triangle with an angle of
3π

2
or 10π (which is impossible
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due to the sum to π rule). Currently our domain is limited to an angle theta in the interval
[
0,
π

2

)
,

we want it to range over R.

In the diagram at the beginning of the section, we have a general point (x, y) on a unit circle

(circle of radius of one and centered at the origin). We can form a right triangle within this unit

circle with the points (x, y), (0, 0), and some other point found by dropping a vertical from (x, y)

onto the x-axis.

Let the angle between the hypotenuse and horizontal leg of the triangle be denoted by θ.

Since we know the radius is one, we know the opposite leg (with length y) equals sin(θ), while

the adjacent leg (with length x) is equal to cos(θ).

This diagram will lead us to our new definitions. Let sin(θ) be equal to the y-coordinate

of the point found by walking theta radians around a unit circle (counterclockwise); cos(θ) is

the same, but the x-coordinate. Negative angles will be computed by performing a clockwise

rotation.

x

y(x)

π/6
= 30

◦

(√
3
2 ,

1
2

)
π/

4
=

45
◦

(√
2
2 ,
√
2
2

)

π
/3

=
60
◦

(
1
2 ,
√
3
2

)

0π = 0◦
(10, 0)

π
/2

=
90
◦

(0, 1)

π = 180◦
(−1, 0)

5π/6 = 150 ◦

(
−
√
3
2 ,

1
2

) 3π/4
=

135 ◦

(
−
√
2
2 ,
√
2
2

)

2π
/3

=
120 ◦

(
−1

2 ,
√
3
2

)

7π/
6 = 210

◦

(
−
√
3
2 ,−

1
2

)
5π
/4

=
22

5
◦

(
−
√
2
2 ,−

√
2
2

) 4π
/3

=
24

0
◦

(
−1

2 ,−
√
3
2

)

11π/6 = 330 ◦ (√
3
2 ,−

1
2

)
7π/4

=
315 ◦

(√
2
2 ,−

√
2
2

)

5π
/3

=
300 ◦

(
1
2 ,−

√
3
2

)

3π
/2

=
2
70
◦

(0,−1)

Above is a diagram of the unit circle with all of its “special” point and their respective

coordinates. It is recommended that you the reader start to memorize this chart; not only is it

usually tested on in Pre-calculus, but it is also integral in calculating simple cases of trigonometric

function with speed. Think of this as your times tables of multiplication, but for trigonometry.
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Another important thing to be aware of are the signs of each trig function (whether they are

positive or negative) within each quadrant of the Cartesian plane. Looking at the signs for each

of the quadrants, we can well which of the three main trigonometric functions:

Quadrant I: Both x and y are positive, meaning that sin(θ) and cos(θ) are positive. Since

both are positive, so is tan(θ).

Quadrant II: x is negative while y is positive, meaning that sin(θ) is positive and cos(θ) is

negative. This means that tan(θ) is negative.

Quadrant III: Both x and y are negative, meaning that sin(θ) and cos(θ) are negative.

Since both are negative, tan(θ) is positive.

Quadrant IV: x is positive while y is negative, meaning that sin(θ) is negative and cos(θ)

is positive. This means that tan(θ) is negative.

Let’s practice using the unit circle in some examples. If necessary, draw the unit circle and trace

the angle to find the corresponding point. For visual learners this will prove to be an effective

learning method.

Example 12.4: Compute sin

(
3π

2

)
.

Solution: Since the input to the function is
3π

2
the relevant point will be found by walking

(counterclockwise) around the unit circle with an angle of
3π

2
. This will leave us at the point

(0,−1). Since are computing the sine of this function, we need the y-coordinate. Therefore,

sin

(
3π

2

)
= −1. �

Example 12.5: Compute tan

(
2π

3

)
.

Solution: Since the input to the function is
2π

3
the relevant point will be found by walking

(counterclockwise) around the unit circle with an angle of
2π

3
. Using the reasoning from

Example 12.4, we can determine that the coordinates of this point are

(
−1

2
,

√
3

2

)
. Since we

want to find the tangent of this angle, we must find the ratio between the opposite and adjacent

sides; in other words, the ratio of the y-coordinate and x-coordinate of the point. Therefore,

tan

(
2π

3

)
=

√
3
2

−1
2

= −
√

3. �

Example 12.6: Compute sec
(
−π

4

)
.

Solution: Since the input to the function is −π
4
, the relevant point will be found by walking

(clockwise because of the negative sign) around the unit circle with an angle of −π
4
. Again,

using the reasoning from Example 12.4, we can determine that the coordinates of this point

are

(√
2

2
,−
√

2

2

)
. By definition of the secant function, we want to find the reciprocal of the

x-coordinate of this point. Therefore, sec
(
−π

4

)
=

1
√
2
2

=
√

2. �

Example 12.7: Compute cos

(
11π

4

)
.
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Solution: This is the first case in which the input angle is over 2π. Since going around the circle

by 2π radians gets us right back where we started, we can "subtract" a loop from our input angle

− leaving us with the same answer.

cos

(
11π

4

)
= cos

(
11π

4
− 2π

)
= cos

(
3π

4

)
= −
√

2

2
.

�

Now, let’s use this skill to solve trigonometric functions.

12.3 Solving Trigonometric Equations

Now that we have a solid foundation for what trigonometric functions are, we can start solving

equations with these functions inside of them. Admittedly, trigonometric equation can get

complicated quickly, forcing you to use around a half-dozen properties as you go through a Pre-

calculus course. Here, since we only wish to present an introduction, we will only go through

the basics − equations which don’t require knowledge of any of these special properties.

One thing you may quickly notice with these equations is that multiple values, sometimes

even infinite values, will solve a given equation. Because of this, questions are usually structured

so that you are asked to find not a value which solves the equation, but all values.
Example 12.8: Find all values of x, where x is defined on [0, 2π), such that sin(x) =

1

2
.

Solution: Using the definition of the sine function established previously, we can translate the

equation into the following question: what angles, which each correspond to a point on the unit

circle, provide a point with a y-coordinate of
1

2
?

There are two unique points on the unit circle with a y-coordinate of
1

2
:

(√
3

2
,
1

2

)
and(

−
√

3

2
,
1

2

)
. The two angles that correspond to these points are

π

6
and

5π

6
. �

Example 12.9: Consider the previous example. Find all values of x, where x is defined on R,

such that sin(x) =
1

2
.

Solution: Using the previous example, we know that the solutions from [0, 2π) are
π

6
and

5π

6
.

How does this get extended to R?

Recall the Example 12.7 from the last section where we had an angle greater than 2π. This

shows that we can have angles greater than 2π; for example, we can add an additional revolution

to
π

6
to get

π

6
+ 2π =

13π

6
. We could keep adding or subtracting loops around the circle an

arbitrary number of times, giving us infinite solutions to the equation. Here’s the way solutions

to this type of problem are usually written out:

x =
π

6
+ 2πk,

5π

6
+ 2πk; k ∈ Z.

This in essence is stating to take all the initial angles we know already work, then add any integer

k of loops around the circle. �
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Example 12.10: Find all values of x such that tan(x) = 1.

Solution: By definition of the tangent function, we can state the following:

tan(x) = 1 =⇒ sin(x)

cos(x)
= 1 =⇒ sin(x) = cos(x).

This new statement, when sine equals cosine, is equivalent to asking, “what angles give points

on the unit circle which have the same x-coordinate and y-coordinate?”

On the unit circle, we could draw the line y = x and search for the intersection points. We

find the angles on the unit circle to be
π

4
and

5π

4
. Extending these angles to solutions outside

this interval, much like the previous problem, gives

x =
π

4
+ 2πk,

5π

4
+ 2πk; k ∈ Z.

While this may appear to be the final answer, we are able to simplify everything significantly

into a cleaner expression. Something special about the tangent (and cotangent) function is that it

has a period of π, unlike every other trigonometric function with a period of 2π. This mean that

the tangent function “repeats” itself every π units, allowing us to combine the two initial angles

which repeat every 2π units into a single initial point which repeats every π units.

=⇒ x =
π

4
+ πk; k ∈ Z.

Notice how all the even values of k give all angles from the 1st original point, whereas the odd

values give all angles from the second. �

Example 12.11: Find all values of x such that sec(x) =
2
√

3

3
.

Solution: Again, using the definition of the relevant function − in this case the secant function

− we can manipulate the initial equation into the following expression:

sec(x) =
2
√

3

3
=

2√
3

=⇒ 1

cos(x)
=

2√
3

=⇒ cos(x) =

√
3

2
.

Going back to the definition of cosine, we can ask “what angles correspond to point on the unit

circle with an x-coordinate of
√

3

2
?” If we remember from the unit circle diagram (within the

standard interval [0, 2π)) we get angles of
π

6
and

11π

6
. Since the cosine function has a period of

2π we need to account for all other solutions in our final answer.

x =
π

6
+ 2πk,

11π

6
+ 2πk; k ∈ Z.

�

Sometimes a system of these simple equations are given, constraining the usual two "initial

angles" we’ve gotten from the previous problems, to just one.

Example 12.12: Find all solutions x to the system

sin(x) =

√
2

2

cos(x) < 0

.

Solution: Thankfully, since everything is already in the form of cosine or sine, we don’t have

to do any initial manipulation. The first equation asks us to find all angles which correspond

to points with a y-coordinate of
1

2
; likewise, the second wants us to find all angles which gives

points with negative x-coordinates.
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Solutions to the 1st equation within the standard interval, again using the unit circle as

reference, include
π

4
and

3π

4
. Only the second angle gives a point with a negative x-coordinate,

therefore we can eliminate the first angle. Finally, since both the sine and cosine functions have

a period of 2π we must add a +2πk term to extend solutions beyond the standard interval.

x =
3π

4
+ 2πk; k ∈ Z.

�

Example 12.13: Find all solutions θ in the 4th quadrant to tan(θ) = −1.

Solution: Like in Example 12.10, we can convert the tangent function into its since and cosine

counterparts:

− sin(θ)

cos(θ)
= 1 =⇒ − sin(θ) = cos(θ).

So, when are the x and y-coordinates opposites of each other within our standard interval? This

occurs at the perfect diagonals in the 2nd and 4th quadrants, giving initial angles of
3π

4
and

7π

4
respectively. Since we want angles within the 4th quadrant, we can ignore the first angle. As for

taking into account extra solutions, while normally we would add on a +πk term because we are

dealing with the tangent function, since we eliminated one of the angles we can use the standard

+2πk.

θ =
7π

4
+ 2πk; k ∈ Z.

�

Now, let’s attempt to graph trigonometric functions, possibly the hardest section in this

chapter.

12.4 Graphing Trigonometric Functions

Finally, the last major topic within this introduction to trigonometry will be graphing each of

the six trigonometric functions, with special emphasis on the primary three. Let’s start with the

parent functions of sine and cosine, then work up through more complex examples and functions.

We can take all the “special” points from the unit circle and place them on a graph; connecting

these points will give us the parent curves.

x

f(x)

f(x) = sin(x)

x

f(x)

f(x) = cos(x)

Like in the previous section, let’s observe the "standard" interval of [0, 2π). With the sine

function (seen in the graph on the left), we start out at (0, 0) moving in the positive y-direction;

at
(π

2
, 1
)
the function reaches a maximum and heads downwards; this continues until the point
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3π

2
,−1

)
when the graph reaches a minimum and begins heading upwards towards the final

point (2π, 0).

For the cosine function (seen in the graph on the right) the function starts at (0, 1) stationary,

but slowly begins moving in the negative y-direction; at the point (π,−1) the graph reaches a

minimum and heads back upwards towards (2π, 1).

For each of these functions, the graph repeats itself every 2π units. This is equivalent to

saying, "given any initial point, going around the circle a full time (adding or subtracting 2π)

gets you back where you started." Put more formally, we can say the sine and cosine functions

have a period of 2π.

It’s important for you to know some other terms relevant to describing trigonometric graphs.

We just went over "period," but here are the rest.

Frequency: equivalent to
1

period
. Instead of asking, "in how many units does the function

repeat itself?" frequency asks, "how many cycles does the function complete within 1

unit?" For example, the sine function has a period of 2π, but a frequency of
1

2π
.

Equilibrium: only relevant for the sine and cosine functions. Essentially the "middle" of

the graph. For example, both the sine and cosine functions are at equilibrium at y = 0.

f(x) = sin(x)+1 is at equilibrium at y = 1. This is also known as "vertical shift".

Amplitude: how far vertically the graph travels from equilibrium. For example, sin(x) has

an amplitude of 1, whereas 3 sin(x) has an amplitude of 3.

Phase Shift: how far the graph is horizontally shifted from its parent function. sin
(
x− π

4

)
has a phase shift of

π

4
in the positive direction while sin

(
x+

π

2

)
has a phase shift of

π

2
in the negative direction.

The general case for all variations of the parent sine function is below. Note that cosine is the

same.

f(x) = A sin

(
2π

T
(x− φ)

)
+ E;

A = amplitude T = period

φ = phase shift E = equilibrium
.

Whenever graphing trigonometric functions there are a handful of special points that need to

be plotted. In the case of parabolas, you need the vertex and intercepts; for rationals, you need

asymptotes and hole, among other things; for trig functions you need maximum and minimum

points (a.k.a extrema), and (for lack of a better term) equilibrium points− points where the graph

intercepts the "middle" of itself.

While with most other functions these points would have to be computed with algebra, and

normally "extrema" would require calculus to find, trig functions are extremely predictable. Take

the sine function: it starts out at a zero, after a quarter of its period (
2π

4
=
π

2
) it reaches a max,

after another quarter its back at zero, three quarters through it reaches a min, and in the end it

goes back to zero.

This predictability allows two separate methods to find special points: to either plug in

specific x-values and calculate their corresponding y-values, or − the fast way − to skip all
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calculations and apply the necessary transformations onto the parent function. Both will be

shown.

Example 12.14: Sketch the function f(x) = 2 sin(x) + 1 by plotting the necessary extrema and

equilibrium points.

Solution: We first plot the necessary values, which in this case are x = 0,
π

2
, π,

3π

2
, 2π.

x 0 π
2 π 3π

2 2π

f(x) 1 3 1 −1 1

We then plot the points and connect them to form the sine curve, as seen below.

x

f(x)

→

x

f(x)

The transformations for this function are a vertical stretch by a factor of 2 (so the amplitude

is 2) followed by a vertical stretch of 1. �

Example 12.15: Sketch the function f(x) = 1− cos(2x) by plotting the necessary extrema and

equilibrium points.

Solution: Since the input to the parent function is being scaled by two, the period of the function
will be halved. This means we will have to adjust our input values so we get every important

point. Remember, we want all the important points within a single period of the function.

x 0 π
4

π
2

3π
4 π

f(x) 0 1 2 1 0

Then, we plot the points and connect the points.

x

f(x)

→

x

f(x)

The transformations for this function are a vertical stretch by −1, a horizontal stretch by
1

2
,

and a vertical shift by 1. �
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The next method − using transformations − is often performed in simple cases since most

of the work is all mental. The advantages to using this system is that it is significantly faster,

again in the simple cases, when compared to calculating individual points. While the following

examples aren’t necessarily "simple," we wanted to increase the variety of problems, despite the

trade-off in complexity.

Example 12.16: Sketch the function f(x) = 2 cos
(x

2

)
− 1 by applying the relevant transfor-

mations onto the parent function.

Solution: We have three different transformations applied to the cosine function here:

2 cos(x) −→ stretches the graph vertically by 2 (gives a curve with amplitude 2)

cos
(x

2

)
−→ stretches the graph horizontally by 2 (doubles the normal period of 2π to

become 4π)

cos(x)− 1 −→ vertically shifts the graph downward by 1 unit (lowers the equilibrium to

y = −1).

Below, we show the parent function on the left and the transformation on the right. �

x

f(x)

→

x

f(x)

Example 12.17: Sketch the function f(x) = sin(2x−π) by applying the relevant transformations

onto the parent function.

Solution: Before we can look at the transformations of this function, we need to factor the inside:

sin (2x− π) = sin
(

2
(
x− π

2

))
. There are two transformations applied:

sin(2x) −→ stretches the graph horizontally by a factor of
1

2
(halves the normal period of

2π to become π)

sin
(
x− π

2

)
−→ shifts the graph horizontally (in the positive direction) by

π

2
.

Since we factored the inside of the function, we need to apply the shift after the scale. For

clarification on why, refer to Section 2.4 regarding horizontal shifts on functions. �

x

f(x)

→

x

f(x)

Remark: The graphs are shown at the top of the next page due to spacing limitations.
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Now that we have covered the two basic functions of sine and cosine, we can move on to

the more complex trigonometric functions. We’ll start with the tangent function, then move onto

the three reciprocal functions.

If you remember back to Section 12.1, the tangent functions is defined to be the ratio between

the sine and the cosine of a given input angle: tan(x) =
sin(x)

cos(x)
. Like all other special functions

you’ve studied so far, there are a set of special points which need to be found when sketching the

function. In the simplest case of just the parent function (without any transformations applied to

it), you need to plot all of the zeros and all of the (vertical) asymptotes.

Since the tangent function is defined to be this ratio between the sine and cosine functions,

zeros occur whenever the numerator sin(x) = 0; likewise vertical asymptotes occur whenever

the denominator cos(x) = 0. Using the techniques developed in Section 12.3 we can solve these

two equations.

sin(x) = 0 =⇒ x = πk k ∈ Z

cos(x) = 0 =⇒ x =
π

2
+ πk k ∈ Z

Thus, we now know the tangent function has zeros at every integermultiple of π, and that there are

vertical asymptotes at every integer multiple of π, but offset by
π

2
.

x

f(x)

To the right here is a graph of the tangent function in blue

with zeros and vertical asymptotes of the function in red.
�

Important: Like the sine and cosine functions, you typically

will only be asked to sketch one (maybe two) period(s) of the

function. One period here is one of the chunks between any

two adjacent asymptotes; for example, the interval
(
−π

2
,
π

2

)
represents one possible period of the function.

Introducing transformations to the tangent function is

extremely similar to how it was done with the sine and cosine

functions, and is arguably simpler. Again, here’s the general formula for the tangent function

with transformations:

f(x) = A tan
(π
T

(x− π)
)

+ I;
A = amplitude T = period

φ = phase shift I = vertical shift
.

While amplitude clearly affects how you sketch a sine or cosine wave, most teachers/professors

wouldn’t care if you drew f(x) = tan(x) and g(x) = 2 tan(x) the same. This stems from

the fact that the "special features" of the tangent function (zeros and asymptotes) aren’t affected

numerically by scale factors. A negative scale factor, however, does change which way the graph

curves (seen in Example 12.19).

Note the difference between the scale factor inside of the function for tangent and for sine

(
π

T
vs

2π

T
respectively). This is because the period of the parent tangent function is half that of

the parent sine/cosine function.
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The variable change of the vertical shift from E to I is largely unimportant. The reasoning

behind this is that the better expression for an "equilibrium point" within the context of the tangent

function is an "inflection point," jargon from the field of Calculus.

x

f(x)Example 12.18: Sketch the function f(x) = tan(2x) + 1.

Solution: Since the input is being scaled by two, everything

in the graph will be horizontally stretched by
1

2
. This means

"inflection points" will occur at every integer multiple of
π

2
and asymptotes at every integer multiple of

π

2
with an offset

of
π

4
. The +1 simply shifts everything up one unit. �

Example 12.19: Sketch the function f(x) =

−2 tan
(

2x+
π

4

)
.

x

f(x)

Solution: Again, like in Example 12.17, we need to factor

the input: tan
(

2x+
π

4

)
= tan

(
2
(
x+

π

8

))
. Now we

can break the function down into its transformations. Since

we multiply the input the input by two, we first horizontally

stretch the parent tangent function by
1

2
. Then we can follow

up by applying the horizontal shift given by φ = −π
8
. Fi-

nally, we reflect everything over the y-axis due to the negative

coefficient out front.

Inflection Points : x = −π
8

+
π

2
k; k ∈ Z

Asymptotes : x =
π

8
+
π

2
k; k ∈ Z

�

Finally, we can finish with the three reciprocal functions csc(x), sec(x), and cot(x). The

cosecant and secant functions are usually grouped together since they are visually very similar,

just like the sine and cosine functions. There are three general rules for these reciprocal functions:

Whenever you see a root (zero) in one of the normal trigonometric functions, there will be

a vertical asymptote at the same locations in its corresponding reciprocal function.

Whenever you see an extrema in one of the normal functions, you will see an extrema in

the reciprocal function of the opposite type (min→ max, max to min).

Whenever you see a vertical asymptote in one of the normal functions you will see a root

(zero) in its corresponding reciprocal function.

Above are the three parent reciprocal functions csc(x), sec(x), and cot(x). In blue are the

functions themselves, in red are all of the vertical asymptotes (and the inflection points for

cot(x)), and in black are the normal trigonometric functions for reference.
�

Important: It is often recommended (for sketching one of the reciprocal trigonometric functions)

that you lightly draw the normal function as a reference (i.e. sin(x) should be drawnwith csc(x).)
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x

f(x)

f(x) = sec(x)

x

f(x)

f(x) = csc(x)

x

f(x)

f(x) = cot(x)

x

f(x)In terms of transformations, they work the same as the

original three trigonometric functions.

Example 12.20: Sketch the function f(x) = 3 csc
(
x− π

4

)
.

Solution: We use the same color scheme as in the parent

functions above.

We have two transformations here − first a horizontal

shift given by φ =
π

4
, then a scale factor of 3 vertically

stretching the graph.

Asymptotes : x =
π

4
+ πk; k ∈ Z

Extrema : x =
π

2
+
π

4
+ πk =

3π

4
+ πk; k ∈ Z

�

We didn’t include an example for each of the other since we believed it to be too repetitive.

So, this is where the section ends. If you don’t choose to read the last section (although we

strongly encourage you do), you can move on to the Review and Challenge problems.

12.5 Author’s Note on Sinusoidal Curves

In this section, we wanted to add on a note here to you the reader. We also wish to quickly stress

that this section is not strictly necessary for any basic understanding of trigonometry; you may

proceed to the next chapter if you wish.

In writing this chapter, we were forced to think about my knowledge and experience with

trigonometry throughout high school, and how we could present an introduction which someone

with no prior familiarity to the subject could follow. One thing we realized was just how

incomplete our understanding of sinusoidal curves/functions truly was. In every single math and

physics class we took through high school we used sin(x) in some capacity, yet seldom remember

ever being told exactly what it is, what it does, and what defines it. That is the purpose of this

section. Five definitions of the sine function and sinusoidal curves will be given here, each of

which has its own advantages, disadvantages, and specific context for when they are typically
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used.

Remark: While the first two definitions have already been discussed in the previous two

sections, the final three do involve complex mathematical ideas. While trigonometry and its

ideas are deeply rooted in Calculus, the final definitions will be presented in a way in which no

knowledge of Calculus is required.

Root Definition. Let there be a right triangle with hypotenuse 1 and some (non-right) angle

within be denoted by θ. sin(θ) here is defined to be the length of the side of the triangle opposite

θ; whereas cos(θ) is the length of the adjacent side.

sin(θ)

cos(θ)

θ

This is the most basic definition for the sine and

cosine functions. While it may be limited in utility due

to a restricted domain, it helps as a starting point to

learning more useful definitions.

Base Definition. Let there be a unit circle cen-

tered at the origin. Given any angle θ, a distinct point

P can be found by rotating around the circle θ radians.

If θ is positive, rotate

counterclockwise, if negative, clockwise. (Start rotat-

ing from the point (1, 0)). The Cartesian coordinates of P are defined to be (cos(θ), sin(θ)).

x

y(x)

(cos(θ), sin(θ))

θ

This is the most commonly “referenced” defini-

tion of the two functions (at least in high school) as it

provides the ability to fluidly transition between alge-

braic and geometric perspectives. A major advantage

is that the domain is extended to R.

Function Analysis Definition. Sinusoidal curves
− a family of curves− can be defined as the only curves

which follow the following two rules.

f2(x) + f2(x+ φ) = c (φ, c ∈ R).

Let’s discuss what these two rules actually mean. The first is a generalization to an extremely

important equation in trigonometry called The Pythagorean Identity. Using the diagram from

the “root definition” and the Pythagorean theorem (a2 + b2 = c2) it is easy to show:

sin2(x) + cos2(x) = 1.

Another important feature of the sine and cosine functions to notice is that each is simply a

“shifted” version of the other. Put more precisely:

sin
(
x− π

2

)
= cos(x).

While this idea is much more easily understood with the visual aid of a graph, a quick "proof" of

this once again comes from the base definition. Using the fact that the sum of angles in a triangle

equals we can say the following about a right triangle: θ+ φ+
π

2
= π =⇒ θ =

π

2
− φ. Since
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the opposite side to θ is the same side as the adjacent side to φ we can prove the above equation.

Allowing for any frequency curve gives us the variable φ and any amplitude − the variable c.

As for the second rule, let’s start with the term continuous. Any function is non-continuous

if there is a “break” in the curve, such as in the case of a piece-wise function. Therefore, it

could be said that a function is “continuous everywhere” if the graph of the function could be

drawn without ever having to pick up your pencil/pen. The term “differentiable” is essentially

a jargon term from Calculus which in essence means “smooth.” For example f(x) = |x| is not
differentiable at x = 0 since at that point there is a "sharp turn" where the graph is not smooth.

So, after boiling down these statements, we could translate everything into layman’s terms:

sinusoidal curves are the only curve which (1) could be drawn with a pencil without ever lifting

the pencil up, (2) are smooth everywhere, and (3) follow a general form of The Pythagorean

Identity.

Remark: As the authors of this book, we were unable to rigorously prove this definition to be

consistent with all other definitions. We all have agreed, however, that this definition appears to

be reasonable; we were additionally unable to come up with any counterexamples. We just want

to make a disclaimer saying that while we cannot prove it, we conjecture the above to be true.

Physics / Differential Equations Definition. While technically this definition is deeply

rooted in Calculus, real-life applications in physics allows for us to skip all the details and get

straight to the concepts. Simple Harmonic Motion is a description in Physics for any object

moving in a sinusoidal fashion. As an example, the most common case in which this comes up

is with (ideal) horizontal springs.

Looking at the diagram to the right, if we pull the ball

downward (left image) we know the ball will be pulled by the

spring back to up; likewise, if the spring is pushed up (right

image), the ball will want to be pushed back down. The more

the spring is compressed or compressed, the more the spring

will pull or push back − equal and opposite in nature. In a

single statement, we can say that the force the spring applies

to the ball is always equal, but in opposite direction, to the

ball’s position: a(t) = −x(t).

The standard sine curve is the solution to this equation

which starts at x = 0 and with an initial speed of 1 unit per

second in the positive x-direction; the cosine curve is the solution which starts at x = 1 and with

an initial speed of zero.

Remark: Here the independent variable here is t for time, with the dependent variable being

the position of the object.

Taylor Series Definition. This is arguably the most mathematically complex definition for

the sine and cosine functions, they have to do with infinite sums. If you haven’t been introduced
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to the concept yet, we’ll start with something simple here. It’s an understandably strange idea

in math that you could add up infinitely many things but end up with a finite result. Let’s take a

look at a simple case.
∞∑
n=0

(
1

2

)n
= 1 +

1

2
+

1

4
+

1

8
+

1

16
+ · · · = 2.

At each step in the sum you half your current distance from 2. While at any finite step you’re

always just short of 2, mathematicians consider that at after summing these terms "infinitely" the

total “equals” 2. The idea behind a "Taylor Series" is to create a very specific infinite sum which

equals a function. The derivation of these sums is a major topic within Calculus 2—something

far beyond the goals of this book. The series for sine and cosine will be left here for those

interested.
∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1 = x− x3

3!
+
x5

5!
− x7

7!
+
x9

9!
− · · · = sin(x)

∞∑
n=0

(−1)n

(2n)!
x2n = 1− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
− · · · = cos(x)

With this, we end the chapter. This chapter has been quite lengthy and has covered a lot of

material, but understanding this chapter will greatly help your time in Pre-calculus. A quarter of

the curriculum is trigonometry; with this preview, you should be well on your way to success.

Give the problems a try! The challenge problems get somewhat difficult, but we believe you

can do it!

K Chapter 12 Review Problemsk

1. Evaluate each of the following: (as an extra challenge, try finding them in your head,

without writing anything down.)

(a) cos(150◦) (c) csc(90◦) (e) cos(315◦) (g) sin(−120◦)

(b) tan(270◦) (d) sin(225◦) (f) tan(30◦) (h) cos(−540◦)

2. Evaluate each of the following: (as an extra challenge, try finding them in your head,

without writing anything down.)

(a) cos

(
3π

4

)
(b) sin (−π) (c) cot

(
5π

4

)
(d) sec

(
7π

6

)
3. What are the domain and range of the function f(t) = 2 tan(3t− π)?

4. For how many values of x such that 0 ≤ x ≤ 7π is cos(x) = −0.01?

5. Find the amplitude, period, and phase shift of f(x) = −2 sin
(x

4
− π

3

)
.

6. Find all values of k such that 3 cot(4k − π) =
√

3.

7. How is the graph of sin
(
x− π

2

)
related to the graph of y(x) = cos(x)? What about

sin
(
x+

π

2

)
?
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8. Cole is writing a calculator program that contains the following lines of code:

x = t*sin(y).

The line of code sets x equal to the product of t and the sine of y. Unfortunately, y is

in degrees, and the "sin" function in her program expects it to be radians. How can Cole

change this line of code to obtain the desired result?

9. Graph y(x) = 2 sin

(
2x

3
− π

)
.

10. Joshuawas taking a Pre-calculus test andwas asked to find tan(40◦). He used his calculator

to find the answer by typing in 40 and pressing the tangent key. He wrote down what his

calculator told him, −1.11721. He was rather upset to have his answer marked incorrect

and was convinced his calculator was broken.

(a) Even without knowing what tan(40◦) equals, how should Joshua have known that his

answer of −1.11721 was not the correct answer?

(b) What mistake did he probably make?

K Chapter 12 Challenge Problemsk

1. If 8 tan(θ) = 3 cos(θ), where 0 < θ < π, determine the value of sin(θ).

2. The graph of some function h(x) = sin(px+ q) is shown below for some values of p and

q. The resulting graph is shown below.

x

f(x)

−5π
2
−2π −3π

2
−π −π

2
5π
2

2π3π
2

ππ
2

Determine all possible values of p and q. (NOTE: the graph should be smoother, but there

was trouble with graphing this one.)

3. Find all values of θ such that sin(3θ) <
1

2
. (You don’t need Chapter 15 for this one!)

4. Consider a function arcsin(x) that is to be defined as the inverse of sin(x) over their

respective domain and ranges. Using your knowledge of trigonometric functions and

inverse functions, answer the following questions:

(a) Evaluate arcsin(−1). (c) Graph arcsin(x).

(b) Give the domain and range of arcsin(x). (d) Compute tan(arcsin(0.5)).

5. Is the function f(x) = 2 sin(x)− tan(x) periodic? If so, what is the period?
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In this chapter, we will discuss the four types of conic sections: parabolas, circles, ellipses,

hyperbolas. You are probably familiar with parabolas and circles, which we will review before

introducing ellipses and hyperbolas. Although it may not be apparent initially, conic sections

have various applications in many subjects, including astrophysics and optics.

Remark: Of all chapters in Pre-Calculus, many students find conics to be the most difficult. If

you struggle at first, especially with hyperbolas, don’t worry! That’s normal.

13.1 Parabolas and Applications

13.1.1 Parabolas as Quadratic Functions

Let’s start by reviewing parabolas. Parabolas are arch-shaped curves represented by quadratic

equations. Any equation you’ve seen in the form

y(x) = ax2 + bx+ c

would have a parabolic graph. The parabola y = x2 − 4x+ 7 can be seen to the right. Up until

this point, you have seen three forms for quadratic equations.

Standard Form: y = ax2 + bx+ c

Vertex Form where (h, k) is the vertex: y = a(x− h)2 + k

Factored form where x = r1, r2 are the roots: y = a(x− r1)(x− r2)
Now, we introduce a fourth form: 1

a(y − k) = (x− h)2 (h, k) is still the vertex of the parabola.

This form has no name, but is the common form when conics are being discussed. It is notably

similar to vertex form.

Example 13.1: Express y = x2 − 4x+ 7 in the form 1
a(y − k) = (x− h)2.

Solution: The method for converting quadratics in standard form to the conic form is clearly

similar to that for converting to vertex form. Start by completing the square.

y(x) = x2 − 4x+ 7

Group together a perfect square and factor.

y(x) = (x2 − 4x+ 4) + 3 =⇒ y(x) = (x− 2)2 + 3



13.1 Parabolas and Applications – 154 –

Finally, to convert this to the conic form, simply subtract the constant from both sides.

y(x)− 3 = (x− 2)2

There is an implicit a = 1, but dividing by 1 on both sides will yield the same equation. �

In the context of conics, parabolas have a unique geometric meaning. All points on a

parabola are equidistant between a point called the focus and a line called the directrix. To find

the locations of the focus and the directrix, we first calculate p = 1
4a . Then the location of the

focus is (h, k+ p) and the equation for the directrix is y = k− p. We can rewrite the conic form

x

f(x)

(2, 2)

y = 0

for quadratics in terms of p instead of a.

4p(y − k) = (x− h)2

Example 13.2: Find the location of the focus and the equation
for the directrix of y(x) = 1

4x
2 − x+ 2. Graph the equation,

the focus, and the directrix.

Solution: Start by putting the equation in conic form by first

completing the square.

Factor out the coefficient of the x2 term.

y =
1

4
(x2 − 4x+ 8)

Extracting the perfect square from the inside we get

y(x) =
1

4

(
(x2 − 4x+ 4) + 4

)
=⇒ y(x) =

1

4

(
(x− 2)2 + 4

)
=⇒ y(x) =

1

4
(x− 2)2 + 1.

Rearranging this to put it into the proper form, we get 4(y − 1) = (x− 2)2.

We see that 4p = 4 =⇒ p = 1 and the vertex of the parabola is (2, 1). Therefore, the

focus is at (2, 1 + 1) =⇒ (2, 2) and the directrix is y = 1− 1 =⇒ y = 0. The graph can be

seen below. �

13.1.2 Application: Projectile Motion

One of the most useful and widely-used applications of parabolas is projectile motion. When

you throw a football or jump in the air, the resulting motion comes in the shape of a parabola. In

such instances, we call the launched object a projectile. If g is the acceleration due to gravity,

v0 is the initial speed, θ is the launch angle, and h is the initial height of the projectile, then the

equation for the projectile’s height over time is

y(t) =
1

2
gt2 + v0t sin θ + h

Remark: For incoming MSE freshmen, this equation will be vital in your Physics 1 class.

Example 13.3: The acceleration due to gravity on the surface of the Earth is g = 10 m/s2.

Suppose you throw your physics textbook up in the air at 30 m/s 60◦ above the horizontal. You

are 2 metres tall and launch the textbook right above your head. Find the equation for the height
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of the book over time and then graph the equation.

Solution: Finding the equation for the textbook’s height simply requires you to interpret the

meaning of each value given in the problem. NOTE: gravity is in the downward direction, so its

value is negative.

y(t) =
1

2
gt2+v0t sin θ+h =⇒ y(t) =

1

2
(−10)t2+(30)t sin (30◦)+(2) = −5t2+30

(
1

2

)
t+2

=⇒ y(t) = −5t2 + 15t+ 2

x

f(x)

The graph for this equation can be seen below. �

13.1.3 Horizontal Parabolas

Up until this point, we’ve only looked at "vertical" parabolas,

or those that pass the vertical line test and have equations in

the form:

4p(y − k) = (x− h)2

In this section, we will examine "horizontal" parabolas like

the one seen here. These parabolas have equations in the

form:

x

f(x)

(14 , 0)

x = −1
4

4p(x− h) = (y − k)2

Many of the properties of vertical parabolas logically follow

for horizontal parabolas. Rather than opening up (p is posi-

tive) or down (p is negative), horizontal parabolas open right

(p is positive) or left (p is negative). Again, (h, k) is the

vertex. Whereas vertical parabolas have focus (h, k + p) and

directrix y = k−p, horizontal parabolas have focus (h+p, k)

and directrix x = h − p. Observe the graph to see how this

looks geometrically.

Example 13.4: Appreciate the equation−8(x−3) = (y−2)2. Find the vertex, focus, directrix.

Then label each of these on a graph of the equation.

Solution: Let’s consult our general equation.

4p(x− h) = (y − k)2

Compare this to the given equation.

−8(x− 3) = (y − 2)2

First, we clearly see the center is at (h, k) = (3, 2). Next we calculate 4p = −8 → p = −2.

Therefore, the focus is at (h + p, k) = (3 − 2, 2) = (1, 2) and the directrix is given by
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x = h− p = 3− (−2) = 5. The graph can be seen to the right (NOTE: the graph opens to the

left

x

f(x)

(1, 2)

x = 5

because p is negative). �

This concludes our discussion of parabolas and its ap-

plications. Hopefully, this section served as mostly review

(apart from horizontal parabolas). Next, we move on to cir-

cles, which will hopefully be complete review fromGeometry

(other than finding the equation of a circle).

13.2 Circles and Applications

13.2.1 General Equation for Circles

Hopefully you’ll remember the general equation for a circle.

(x− h)2 + (y − k)2 = r2

(h, k) is still, of course, the center of the circle and r is the

x

f(x)

(1,−3)

radius of the circle.

Example 13.5: Graph the equation: x2−2x+y2+6y−15 =

0. Be sure to label its center and state its radius.

Solution: This problem can be daunting initially. Keep calm

and remember the tools you have available to you! Let’s start

by completing the square for both the x terms and the y terms.

Gather the "perfect squares", taking from the constant

term to make them complete.

(x2 − 2x+ 1) + (y2 + 6y + 9)− 25 = 0

Move the constant term over and factor the squares.

(x− 1)2 + (y + 3)2 = 25

We can now see the center of the circle is (1,−3) and the radius is
√

25 = 5. The graph of this

circle can be seen to the right. �

13.2.2 Application: Circular Motion

This may not make perfect sense right now, but understanding circular motion will be important

for your Physics 1 class. For now, we will only look at a simple practice problem.

Example 13.6: To keep an object with mass m moving at speed v in a circle of radius r, you

must exert a force F = mv2

r at the center. Suppose Luka is standing at the origin. He proceeds

to attach his calculator (mass 0.5kg) to a string and spin it at 30m/s. The force he exerts on the

calculator has magnitude 150N. Find the length of the string and graph the resulting motion.
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Solution: Start by solving for the radius r. We know our general equation is: F = mv2

r . Plug in

x

f(x)

our known values (m = 2, v = 30, F = 200) to get 150 =
(0.5)(30)2

r . Rearranging and solving for r, we find that r = 3.

So, the length of the string is 3 metres. Luka is standing at

the origin, so (h, k) = (0, 0). Therefore, the equation for the

circle is.

(x− 0)2 + (y − 0)2 = 32 =⇒ x2 + y2 = 9.

The graph of this circle can be seen to the right. �

13.3 Ellipses and Applications

In this section, we introduce the general equation for ellipses.

The equation for ellipses is very similar to that for circles.

Remark: Ellipses are often incorrectly called "ovals" by incoming students.

13.3.1 General Equation for (Horizontal) Ellipses

The general form for the equation of an ellipse is
(x− h)2

a2
+

(y − k)2

b2
= 1; (a, b) ∈ R, a 6= 0, b 6= 0, a > b.

Note that this equation is only true for "horizontal" ellipses, those that are more wide than they

C
V2V1

V ′1

V ′2

F2F1

are tall (like the one seen to the right).

Let’s break this equation down. (h, k) is the center of the

ellipse. a is called the semi-major axis, or half the width of

the ellipse. The points at (h± a, k) are called the vertices. b

is called the semi-minor axis, or half the height of the ellipse.

The points at (h, k ± b) are called the co-vertices. See the

diagram to the right for a more visual explanation.

Lastly, we must introduce the foci (focus when singular). Ellipses are defined as the set of

all points where the sum of the distances to the two foci is constant. The foci for horizontal

x

f(x)

C
V2V1

V ′2

V ′1

F2 F1

ellipses are located at (h± c, k). c is a value called the focal

radius, calculated using c =
√
a2 − b2. The foci are labeled

in the graph to the right.

Example 13.7: Graph the equation (x−1)2
16 + (y−2)2

9 = 1. Be

sure to label the center, vertices, co-vertices, and foci.

Solution: See the graph below. It should be clear from the

equation that the center is (1, 2). Looking at the two divisors,

16 and 9. a must be
√

16 = 4 because it is the larger divisor.

Hence, b must be
√

9 = 3. Remember the vertices are at
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(h ± a, k) for horizontal ellipses, so the vertices here are (1 ± 4, 2). The co-vertices are at

(h, k ± b), so the co-vertices here are (1, 2± 3). Lastly, we can calculate that the focal radius is

c =
√
a2 − b2 =

√
7. The foci are at (h± c, k), so the foci here are at (1±

√
7, 2). The graph

is to the right of this solution at the bottom of the previous page. �

13.3.2 General Equation for (Vertical) Ellipses

x

f(x)

Now let’s explore the general equation for "vertical" ellipses,

those that are taller than they are wide.
(y − k)2

a2
+

(x− h)2

b2
= 1

(a, b) ∈ R, a 6= 0, b 6= 0, a > b.

Notice, the only difference is that the y part is now over a2

while the x part is now over b2. Because the ellipse is now

taller, its vertices are at (h, k ± a) and its co-vertices are at

(h± b, k). Its foci are instead at (h, k ± c). Everything else remains the same. See the diagram

to the right for a visual explanation.

Example 13.8: Graph the equation (y−3)2
36 + (x−2)2

4 = 1. Be sure to label the center, vertices,

co-vertices, and foci.

Solution: It should be clear from the equation that the center is (2, 3). Looking at the two

x

f(x)

C

V2

V1

V ′2V ′1

F2

F1

divisors, 36 and 4. a must be
√

36 = 6 because it is the

larger divisor. Hence, b must be
√

4 = 2. Remember the

vertices are at (h, k ± a) for vertical ellipses, so the vertices

here are (2, 3 ± 6). The co-vertices are at (h ± b, k), so the

co-vertices here are (2 ± 2, 3). Lastly, we can calculate that

the focal radius is c =
√
a2 − b2 =

√
32 = 4

√
2. The foci

are at (h, k ± c), so the foci here are at (2, 3 ± 4
√

2). The

graph is depicted to the right and uses the key below. �

C = (2, 3) V1 = (2,−3) V2 = (2, 9)

V ′1 = (0, 3) V ′2 = (4, 3) F1 = (2, 3− 4
√

2)

F1 = (2, 3− 4
√

2) F2 = (2, 3 + 4
√

2)

.

13.3.3 Application: Kepler’s First Law of Planetary Motion

Kepler’s First Law of Planetary Motion states that planets move in an elliptical orbit with the Sun

at one of the two foci.

Example 13.9: At its closest point (perihelion), Mars is 1.4AU from the Sun. At its farthest

point (aphelion), Mars is 1.7AU from the Sun. Use this information to find an equation for

Mars’s elliptical orbit.
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Solution: Assume the center of the ellipse is at the origin. Adding the two extreme distances

will give us the value of the major axis 1.4 + 1.7 = 3.1AU. Therefore the semi-major axis

a = 3.1/2 = 1.55AU.

Furthermore, if the center is at the origin, then the Sun must be 1.7 − 1.4 = 0.3AU offset

from the center. We can also call this distance the focal radius, so c = 0.3AU.

With a and c, we can calculate b:

c =
√
a2 − b2 =⇒ b =

√
a2 − c2

Hence, b =
√

1.552 − 0.32 =
√

1.25 ≈ 1.1AU.

Let’s plug these values into our general equation for a horizontal ellipse at the origin:
x2

a2
+
y2

b2
= 1

This becomes
x2

1.552
+

y2

1.12
= 1 =⇒ x2

2.4
+
y2

1.2
= 1.

�

With this, we conclude our study of ellipses. Hopefully, this wasn’t terribly difficult, for

it is only an extension of circles. Finally, we will be studying parabolas − a slight twist on the

ellipse function to yield a completely new concept.

13.4 Hyperbolas

In this section, we introduce the final conic: hyperbolas. As you will see in this section,

hyperbolas resemble two opposite facing parabolas. Below are a depiction of a horizontal and a

vertical hyperbola.

x

f(x)

x

f(x)

Let’s explore each type separately.
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13.4.1 General Equation for (Horizontal) Hyperbolas

"Horizontal" hyperbolas open to the left and right and have a general equation of:
(x− h)2

a2
− (y − k)2

b2
= 1; (a, b) ∈ R, a 6= 0, b 6= 0, a < b.

Hopefully you can guess by now that (h, k) is the center. a is the semi-major axis, or half

the distance between the two "parabolas". The points (h± a, k) are called the vertices. b is the

semi-minor axis. The points (h, k ± b) are called the co-vertices.
Hyperbolas have a focal radius c =

√
a2 + b2. Notice that this is not the same calculation

for ellipses (where c =
√
a2 − b2). The points (h± c, k) are called the foci of the hyperbola.

x

f(x)

(1, 0)
(5, 0)(−2, 0)

The asymptotes are opposite in sign and the slope is the

ratio of b to a. The formula for them are y−k = ± b
a

(x−h).

Let’s do an example.

Example 13.10: Graph the hyperbola (x−1)2
16 − y2

9 = 1. Be

sure to label the center, vertices, co-vertices, and foci.

Solution: The center is at (1, 0). 16 is the larger divisor, so

a =
√

16 = 4. Therefore, b =
√

9 = 3. We can calculate

the focal radius c =
√

16 + 9 = 5. The vertices are at (h ±
a, k) = (1±4, 0). The co-vertices are at (h, k±b) = (1,±3).

The foci are at (h ± c, k) = (1 ± 5, 0). The asymptotes are

thus y−0 = ±3

4
(x−1) =⇒ y = ±3

4
(x−1). See the graph

to the right − unfortunately, due to space limitations, there wasn’t space to label the co-vertices

and the foci. �

13.4.2 General Equation for (Vertical) Hyperbolas

Just like the other conics, hyperbolas can also be oriented vertically. The general equation for

x

f(x)

vertical hyperbolas is:
(y − k)2

b2
− (x− h)2

a2
= 1

(a, b) ∈ R, a 6= 0, b 6= 0, a < b.

Many properties from horizontal hyperbolas carry over.

(h, k) is the center, a is the semi-major axis, b is the semi-

minor axis, and c =
√
a2 + b2 is the focal radius. However,

(h, k ± a) are the vertices, (h ± b) are the co-vertices, and

(h, k ± c) are the foci.
Example 13.11: Graph the hyperbola y2

144 −
x2

25 = 1. Be

sure to label the center, vertices, co-vertices, and foci.

Solution: The center is at (0, 0). 144 is the larger divisor, so a =
√

144 = 12. Therefore,

b =
√

25 = 5. We can calculate the focal radius c =
√

144 + 25 = 13. The vertices are at
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(h, k± a) = (0,±12). The co-vertices are at (h± b, k) = (±5, 0). The foci are at (h, k± c) =

(0,±13). We use the formula for the asymptotes to see the asymptotes are at y(x) = ±12

5
x.

See the graph at the bottom of the previous page for the graph. �

13.5 A Note on Rational Functions

x

f(x)

How many of the four conics can be represented by functions

(passing the vertical line test)? The seemingly obvious an-

swer is one, just parabolas because they can be represented

by functions like y = x2 when they are vertically oriented.

However, we’ve failed to mention up to this point that conics

are not just oriented horizontally or vertically. Instead, they

can be rotated by any angle and still be considered a conic.

Consider a rotation of the hyperbola given by x2− y2 = 1 by

an angle of 45◦ or π4 radians. This results in the graph seen

below.

Maybe you will recognize this as the function y = 1
x or

xy = 1. This equation satisfies the vertical line test and represents a hyperbola. Therefore,

there are two conics that can be represented by functions: (vertically-oriented) parabolas and

(diagonally-oriented) hyperbolas.

Proving this is a bit beyond the scope of this book, but if you can prove it, you’ll be well on

your way to succeeding at Pre-calculus. Here’s a hint: the formal definition of a hyperbola is a

set of points where the positive difference between dist(P −F1) and dist(P −F2) for arbitrary

point P is the same. This task will be in the challenge problems.

With this, we conclude the discussion of Conics. This was not an easy chapter, but learning

it now will make studying it in the Spring a lot easier. Proceed to the Review and Challenge

problems and attempt to do them, but don’t worry if you can’t solve them all.

K Chapter 13 Review Problemsk

1. Find the vertex and axis of symmetry of the following equations, then graph them.

(a) y = 4x2 − 12x+ 8. (b) x =
1

6
(y − 4)2 − 1

2. The vertex of the parabola x = 4y2 + 6y + c lies on the y-axis. Find c.

3. For each of the two descriptions below, find an equation to represent the function.

(a) An ellipse with vertices at (3, 6) and (3,−2) and co-vertices at (0, 2) and (6, 2).

(b) A hyperbola with vertices at (−2, 1) and (−2, 3) with asymptotes sloped at ±1

2
.

(c) A parabola with vertex (2, 1) and y-intercept of (0, 3).



13.5 A Note on Rational Functions – 162 –

4. Find the indicated value for the following functions.

(a) The minimum of x(y) = 2y2 − 4y + 19.

(b) The maximum of y(x) = 37− 16x− x2.
(c) The minimum of x2 + 4y2 − 6x+ 4y + 5.

5. Find the area enclosed in the graph x2 +y2 = 16x+ 32y. (Hint: consider how we find the

area of a circle. Try re-writing the formula in terms of the axes lengths so it’s applicable

to an ellipse).

6. Graph each of the equations below, then find the foci, center, and lengths of the axes of

each graph.

(a)
(x− 3)2

9
+ y2 = 1 (b) 4x2 + y2 + 16x− 6y = 11

7. Ellipse E has a horizontal major axis, one focus at (4, 1), and one axis with an endpoint at

(6, 5). Find an equation whose graph is this ellipse.

8. Find the center, asymptotes, and vertices of the graphs of each equation below, then graph

each equation.

(a) x2 − 4(y + 1)2 = 1 (b) 2x2 − y2 + 8x+ 6y = 9

K Chapter 13 Challenge Problemsk

1. An airline company currently charges $200 per ticket, and sells 40, 000 tickets. For every

$10 they increase the ticket prise, they sell 1000 fewer tickets. How much should they

charge to maximize their revenue? (Hint: make an equation − it should be a conic!)

2. One of the graphs of the following equations comes within 1 unit of the point (265, 346).

Which one?

(A) y2 + x+ 4y + 7 = 0 (B) x2 + y2 + 4y + 17 = 0

(C) 16x2 − 96x− 9y2 − 54y = 81 (D) 25x2 + 9y2 − 36y = 9

3. Prove that y(x) =
1

x
is a hyperbola; find the foci of the function.

4. The latus rectum of an ellipse is a line segment with both endpoints on the ellipse that is

parallel to the minor axis and passes through the focus of the ellipse. Find the length of a

latus rectum of the graph of
x2

a2
+
y2

b2
= 1 in terms of a and b.

5. If x is real, then determine the maximum value of
3x2 + 9x+ 17

3x2 + 9x+ 7
.

6. Given that x2 + y2 = 14x + 6y + 6, what is the largest possible value that 3x + 4y can

have? (There’s a cool calculus way to do this, but stick with the geometry/algebra way.)



Chapter 14 Inequalities

Contents
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h Rational Inequalities

h Radical Inequalities

h Exponential and Logarithmic In-

equalities

The first half of this text covered the essential equation types, their properties, and how to graph

them. The goal of this chapter is to discuss the inequality versions of these equation types and to

explore the similarities and differences between inequalities and equations.

Rather than combining these sections with their respective chapters, we chose to dedicate a

specific chapter to them because we believed that it is best suited to learn them together. Many

of the methods seen in this chapter flow between sections, which would have been more difficult

to convey between chapters.

We’ll do these in the order of the previous chapters, starting with polynomial inequalities.

14.1 Polynomial Inequalities

This section will go over solving inequalities of any degree. In order to solve these inequalities,

we need to find the points in which the graph changes sign (usually at the roots of the polynomial).

We will use the examples to expand upon the method.

Remark: Note that we won’t discuss linear inequalities in this section, since they are overly

easy when compared to the difficulty of later problems. If you can do those, linear problems will

come much easier.

Example 14.1: Find all x such that (x− 2)(x− 3) ≥ 0.

Solution: To solve a problem in factored form, we need to check every section of points. In this

case, there are the points such that x ≥ 3, 2 < x < 3, and x ≤ 2. In problems like these, we

divide the regions by the intercepts since this is when the graph usually changes sign.

When x ≤ 2, both x− 2 and x− 3 are non-positive (this is easiest seen by checking a point

in the region, such as x = 0). Thus, (x− 2)(x− 3) ≥ 0 when x ≤ 2.

When 2 < x < 3, x − 2 is positive but x − 3 is negative (check x = 2.5). Thus,

(x− 2)(x− 3) < 0 when 2 < x < 3.

When x ≥ 3, both x−2 and x−3 are non-negative. Thus, (x−2)(x−3) ≥ 0 when x ≥ 3.

This means we have two intervals that work. We write these in interval notation, meaning

the answer is x ∈ (−∞, 2] ∪ [3,∞). �

Example 14.2: Find all x such that 2x2 + 9x+ 4 < 0.
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Solution: We factor the quadratic to follow the same method as Example 14.1. Factoring gives

(2x+ 1)(x+ 4) < 0. Again, we split the function into three intervals: x ≤ −1

2
, −1

2
< x < 4,

and x ≥ 4.

When x ≤ −1

2
, this makes both the factors negative, leading to a positive product. This is

not what we want.

When−1

2
< x < 4, this makes the left factor negative and the right positive (check x = 0),

leading to a negative product. This is what we are looking for, so we include this interval.

When x > 4, this leads to two positive factors, giving a positive product. Again, we don’t

want this.

We are left with one interval in the solution, which is −1

2
< x < 4. �

Example 14.3: Find all x such that x2 − 4x+ 2 > 0.

Solution: We can quickly see that this quadratic does not factor. Thus, we are forced to use the

quadratic formula to solve this one. We get

x =
4±

√
16− 4(1)(2)

2
=

4± 2
√

2

2
= 2±

√
2.

Now we need to check the chunks, just like the previous problems. Doing this finds the first and

third intervals to be valid, just like Example 14.1. Read the remark below to understand why.

The final interval of validity is (−∞, 2−
√

2) ∪ (2 +
√

2,∞). �

Remark: The fact that the intervals are the same is not a coincidence. Given a positive leading

coefficient and a greater-than-sign, the first and last interval will always be correct. This can be

seen easily by graphing the quadratic. If there is a less-than-sign, then the middle interval is the

correct interval. We will see this very soon when we discuss higher-order polynomials, because

we will use this - along with the multiplicity - to more quickly find the valid intervals.

Sometimes factoring isn’t the best way to solve problems, since there are many instances

when factoring isn’t possible. Rather than using the quadratic formula, let’s consider a similar

problem to Example 14.3 using the vertex form. This also helps to see the answer when there

are no real roots.

Example 14.4: Find all values of x such that y(x) = 2x2 + 8x+ 27 is greater than zero.

Solution: If you attempt to use the quadratic formula, you find that there are no real roots (the

discriminant is −19). Instead, let’s use vertex form. This gives us

y(x) = 2(x2 + 4x) + 27 = 2(x+ 2)2 + 27− 8 = 2(x+ 2)2 + 19.

We see that for all x, (x+2)2 ≥ 0, meaning that y(x) > 0 for all x. So, our interval is (−∞,∞).

�

We can also use this skill to find the range of various functions. Let’s use the next examples

to find the range of a function.

Example 14.5: Let f(x) =
5x2 − 4x+ 8

x2 + 1
, where the domain of f is R. Find the range of f .

Solution: Since every x-value must correspond to a y-value in the range of f , we need to find
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all values of k such that f(x) = k. Multiplying by x2 + 1, and rearranging, we get

(k − 5)x2 + 4x+ (k − 8) = 0.

Theremust be at least one value of x such that the discriminant of this polynomial is non-negative.

The discriminant of the polynomial is

(4)2 − 4(k − 5)(k − 8) ≥ 0.

Solving this for k by expanding gives us

−k2 + 13k − 36 ≥ 0 =⇒ k2 − 13k + 36 ≤ 0 =⇒ k ∈ [4, 9].

This means that [4, 9] is the range of f . �

Now that we’ve discussed quadratic polynomials, let’s discuss higher-order polynomials. It

is very much the same concept. We will run through a few examples and discuss the common

trend.

Example 14.6: Find all x such that x3 − 7x+ 6 > 0.

Solution: Similar to the quadratic problems discusses previously, we need to find the roots of the

polynomial. We’ve done this before in Chapter 6 when we discussed higher-order polynomials.

Using synthetic division, we find the roots.

Testing x = 1 provides us a quick root. Using synthetic division, we find that

x3 − 7x+ 6 = (x− 1)(x2 + x− 6).

Factoring the quadratic, we get that

x3 − 7x+ 6 = (x− 1)(x+ 3)(x− 2).

Plotting this on a number line, we get

−3 −2 −1 0 1 2 3

We now need to check the areas around these points. Checking x = 3 (or an equivalent

large number), all the factors are positive, so this region is valid. Checking x = 1.5, we get that

the (x − 2) factor is negative, so the region is not valid. Checking x = 0, we get a positive

number (it’s easiest to check the un-factored form). Checking x = −4 (or an equivalent small

number), all factors are negative, so this region is not valid.

The filled-in number line is shown below.

−3 −2 −1 0 1 2 3

Reading the number line, we see the interval is (−3, 1) ∪ (2,∞). �

You might notice that in all the examples we’ve covered that the intervals always alternate

between positive and negative. This is a great observation and is mostly true! There is one

example when it isn’t, which we see in the next example.

Example 14.7: Find all x such that x3 + 2x2 − 4x− 8 ≤ 0.
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Solution: Hopefully you noticed to factor by grouping in this case. Factoring this gets

x2(x+ 2)− 4(x+ 2) = (x+ 2)(x2 − 4) = (x+ 2)2(x− 2).

Drawing the number line, we get

−3 −2 −1 0 1 2 3

When we check values of x, note that (x+ 2)2 is always positive. This means we only have

to check the (x− 2) factor. If we check the rightmost interval (x = 3 works), we get a positive

value, which is invalid. Checking x = 0 (the middle interval), this is a negative value, which is

valid. Checking x = −3 (the leftmost interval), we get a negative value.

The filled in number line is shown below.

−3 −2 −1 0 1 2 3

This leaves the interval (−∞,−2] ∪ [−2, 2], which can be simplified to (−∞, 2]. �

This time it was different! We see that −2 has the same sign on both sides. Why could

this be? Well, we know that −2 in this case has a multiplicity of 2, meaning that graphically

the function remains on the same side of the axis. Look at the theorem below to see the formal

definition.

Theorem 14.1. Multiplicity Rules for Inequalities

♥

Given a function f(x) that can be factored into

f(x) = k(x− x1)a1(x− x2)a2 . . . (x− xn)an

for some real constants x1,x2,. . .,xn, positive constants a1,a2,. . .,an, and non-zero k ∈ R,

we determine the behavior of factor (x− xi)ai (where i ≤ n) as follows:
If ai is even, then xi will have the same sign on both sides of xi.

If ai is odd, then xi will switch signs going across xi.

We use this rule to quickly determine the "sign chart" for the function.

Let’s attempt to use this theorem in action in a fourth-degree problem.

Example 14.8: Find all x such that x4 − 4x3 − 3x2 + 14x− 8 > 0.

Solution: We need to factor this, and it might take a few tries to do. Quickly checking x = 1,

we realize that it works. This gives us

x4 − 4x3 − 3x2 + 14x− 8 = (x− 1)(x3 − 3x2 − 6x+ 8).

We check x = 1 again and it works again! This gives us

x4 − 4x3 − 3x2 + 14x− 8 = (x− 1)2(x2 − 2x− 8).

Factoring this, we get

x4 − 4x3 − 3x2 + 14x− 8 = (x− 1)2(x+ 2)(x− 4).
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Now, we can use Theorem 15.1 to our advantage. The number line shows us

−5 −4 −3 −2 −1 0 1 2 3 4 5

We only need to check one value, and in this case it’s easy to check a very high value. This

gives us a positive solution, which is valid. Now, we follow the multiplicity rules.

x = 4 has an odd multiplicity, so the sign changes to negative. Then, the sign doesn’t

change around x = 1. Finally, it changes around x = −2.

The filled-in number line looks like this:

−5 −4 −3 −2 −1 0 1 2 3 4 5

Reading the number line, we see the interval is (−∞,−2) ∪ (4,∞). �

Now, let’s use this knowledge and expand to rational functions. This won’t be much more

difficult than these examples; there’s just one more step.

14.2 Rational Inequalities

Rational Inequalities follow a similar process to the one seen in the previous section. However,

we must account for one more factor not seen in polynomials: discontinuities. Again, we will be

solving functions such that f(x) < 0, f(x) > 0, f(x) ≤ 0, and f(x) ≥ 0.

First, the rational functions must be combined into a single fraction; however, expansion

of polynomials is discouraged. It is best to factor all denominators (and leave them factored)

throughout this process. Then, once one fraction is achieved; take note of all discontinuities

(removable or non-removable). These will be marked on the number line as open-holes. Finally,

find the roots of the numerator using the same method as before. In short, we are using the

methods outlined in Chapter 7 to locate the zeroes and the discontinuities, then "checking the

chunks" as we did with polynomials.

Example 14.9: Find all values of x such that
x3 − 15x2 + 74x− 120

x2 − 8x+ 12
≤ 0. Write your answer

in interval notation.

Solution: First, we need to factor the fraction to find the roots of both polynomials. The

denominator is easy; we see that x2 − 8x + 12 = (x − 2)(x − 6). Factoring the numerator is

a bit harder. Checking small values for x don’t work. Trying x = 5 works (there’s a reason for

choosing this first, but it’s beyond the scope of this book). Synthetic division gives us:

1 − 15 74 − 120

5 5 − 50 120

1 − 10 24 0

This leaves us with x3 − 15x2 + 74x − 120 = (x − 5)(x2 − 10x + 24). Factoring the

quadratic gives us x3 − 15x2 + 74x− 120 = (x− 5)(x− 4)(x− 6). Let’s rewrite the original
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problem in factored form.
x3 − 15x2 + 74x− 120

x2 − 8x+ 12
≤ 0 =⇒ (x− 4)(x− 5)(x− 6)

(x− 2)(x− 6)
≤ 0.

We notice that there’s a removable discontinuity at x = 6 and a non-removable discontinuity at

x = 2. Although they are different, we need to account for both of them. We make this different

since it will help with an advanced trick demonstrated at the end of the section.

Let’s make a number line with the roots and the discontinuities.

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

Now, we can check the intervals. For these, it is easiest to look at the signs for each

polynomial and use sign parity to determine the final sign.

At a large x, all terms are positive. This leads to a positive value, which is not less than zero.

At x = 5.5, the two negative terms are both (x − 6) terms, which cancel each other. This still

leads to a positive value, which is not less than zero. At x = 4.5, (x− 5) is also negative. This

leads to a negative value, which is less than zero. At x = 3, (x− 4) is now negative, cancelling

the (x− 5) term. The value is now positive, which is not less than zero. At x = 0, all terms are

negative, leading to a negative product. This is less than zero.

Plotting the filled-in number line, we get

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

Reading the number line, we see that the final interval is (−∞, 2) ∪ [4, 5]. �

This problem is going to escalate really quickly. In doing this chapter, we believe that the

ability to solve the hardest problem will make the simpler problems so much easier. Let’s look

at the next example.

Example 14.10: Find all x such that
x3 − 10x2 + 29x− 20

x2 − 6x+ 9
÷ x2 − 6x

x3 − 12x2 + 41x− 30
≥ 0.

Solution: This problem is much harder for a number of reasons. Note the number of terms we

have in division. We must keep track of all these discontinuities as we go.

First, we factor everything. We quickly know that x2 − 6x = x(x− 6) and x2 − 6x+ 9 =

(x− 3)2. Now, to factor the cubics. Checking x = 1 for x3 − 10x2 + 29x− 20 works, and we

get

1 − 10 29 − 20

1 1 − 9 20

1 − 9 20 0

Factoring the resultant polynomial gives us x2 − 9x+ 20 = (x− 4)(x− 5); thus,

x3 − 10x2 + 29x− 20 = (x− 1)(x− 4)(x− 5).

Now for the other cubic. Checking x = 1 for x3 − 12x2 + 41x− 30 works, and we get
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1 − 12 41 − 30

1 1 − 11 30

1 − 11 30 0

Factoring the resultant polynomial gives us x2 − 11x− 30 = (x− 5)(x− 6), meaning that

x3 − 12x2 + 41x− 30 = (x− 1)(x− 5)(x− 6).

We rewrite the problem in terms of these factored polynomials:
(x− 1)(x− 4)(x− 5)

(x− 3)2
÷ x(x− 6)

(x− 1)(x− 5)(x− 6)
≥ 0.

Now we need to note all the discontinuities here. We easily tell that x = 3 is a discontinuity as

well as x = 1, x = 5, and x = 6. Are there any more? There is! Since the entire second term

is divided, we need to find when the entire term equals zero, which is when x = 0 and x = 6.

Compiling the numbers, we have discontinuities at x = 0, 1, 3, 5, 6.

Now, when is x valid? It’s when the numerator of the first fraction equals zero, which is

when x = 1, 4, 5. The two discrepancies are at x = 1, 5, meaning x is valid only at x = 4.

Let’s check to see if any are removable. We flip the second fraction and multiply to get
(x− 1)(x− 4)(x− 5)

(x− 3)2
· (x− 1)(x− 5)(x− 6)

x(x− 6)
≥ 0.

The only term that cancels is x = 6, meaning it’s the only removable discontinuity. Let’s get to

plotting.

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

Let’s start checking. There are six factors that need checking (since (x− 6) always cancels

itself and (x− 3)2 is always positive). However, we must check all chunks.

At large x, all factors are positive, which leads to a positive product. At x = 5.5, (x − 6)

all important factors are still positive, leading to a positive product. At x = 4.5, (x − 5) turns

negative, giving a negative product. At x = 3.5, both (x− 4) and (x− 5) are negative, leading

to a positive product. At x = 2, the important factors have the same sign, again leading to a

positive product. At x = 0.5, (x− 1) turns negative, leading to a negative product. At x = −1,

all factors are negative, leading to a positive product.

Below is the filled-in number line containing this data.

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

Writing this in interval notation gives us (−∞, 0) ∪ (1, 3) ∪ (3, 4] ∪ (5, 6) ∪ (6,∞). �

That is as hard as it’s going to get. In summary, for problems such as these, find all the

discontinuities, then find the roots, then check the chunks. Let’s discuss a faster way to do this.

The last part of this section goes over a quick method to find the intervals. This is an

advanced method and is not for all viewers; don’t be discouraged if you do not understand. The
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method is an extension of the multiplicity rule mentioned in the previous section to fit inequalities

of all types.

x

y(x)

Theorem 15.1 gives us the rules for changing signs across a

zero given a certain multiplicity; however, it only works for non-

removable discontinuities. We must note that removable disconti-

nuities do not abide by this. Since removable discontinuities are

holes− rather than asymptotes− the graph won’t change sign since

the graph doesn’t move.

Consider the graph to the right of f(x) =
x(x− 2)

x− 2
. We see

that there is a hole at x = 2, but the graph doesn’t change signs.

This is because the hole doesn’t move the graph, it just impacts the

domain (and the range) by a single value.

We summarize the multiplicity extension in Theorem 15.2 to determine whether we change

signs or not.

Theorem 14.2. Extension of the Multiplicity Rule

♥

Given a rational function f(x) that has denominator

k(x− x1)a1(x− x2)a2 . . . (x− xn)an

for some real constants x1,x2,. . .,xn, positive constants a1,a2,. . .,an, and non-zero k ∈ R,

we determine the behavior of factor (x− xi)ai (where i ≤ n) as follows:
If ai is even, then xi will have the same sign on both sides of xi.

If ai is odd, then xi will switch signs going across xi.

If xi is a removable discontinuity, xi will have the same sign on both sides of xi.

Adding this third rule will allow us to use this rule for rational inequalities as well.

Let’s try one last example where we use Theorem 15.2 to make this process easier.

Example 14.11: Find all values of x such that
x2 − 16

x2 + 5x+ 6
÷ x2 + 5x+ 4

x2 − 2x− 8
≤ 0.

Solution: The first step is to factor all the polynomials. They are all easily factorable and are not

the major point of this example. We won’t show the work factoring these − here is the example

written in factored form:
(x+ 4)(x− 4)

(x+ 2)(x+ 3)
÷ (x+ 1)(x+ 4)

(x− 4)(x+ 2)
≤ 0.

We note all the discontinuities as x = −3,−2 from the first denominator, x = −4,−1 from the

second numerator, and x = −2, 4 from the second denominator. We flip the second fraction:
(x+ 4)(x− 4)

(x+ 2)(x+ 3)
· (x− 4)(x+ 2)

(x+ 1)(x+ 4)
≤ 0 =⇒ (x− 4)2

(x+ 1)(x+ 3)
≤ 0.

From this, we can see that (x+ 2) and (x+ 4) both cancel, so x = −4,−2 are removable, while

x = −3,−1, 4 are all non-removable.

Finding the roots, we get x = −4, 4. These both conflict with the discontinuities, meaning

that there are no roots.



14.3 Radical Inequalities – 171 –

Let’s plot the number line.

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

Now, let’s try to use the multiplicity rules. We check a very large x and see the value is

positive. Now, let’s use the multiplicity rules to guide us.

x = 4 is a squared term, meaning that we don’t change sign, meaning it’s still positive.

x = −1 is a non-removable, linear term, so we change sign, meaning it’s now negative. At

x = −2, we have a removable discontinuity, so we don’t change sign, meaning it’s still negative.

At x = −3, we have a non-removable, linear discontinuity, so we change the sign, meaning it’s

now positive. At x = −4, we have a removable discontinuity, meaning we don’t change sign, so

it’s still positive.

Let’s take a look at the filled-in number line.

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

Looking at the interval, the values of x we need are at (−3,−2) ∪ (−2,−1). �

Congrats! You got through the hardest example. Hopefully the method made a bit of sense;

it takes some practice to understand and implement, but once you get it, it’s very rewarding.

This was the hardest section of the chapter, so it’s downhill from here. We move on to

radical inequalities next.

14.3 Radical Inequalities

The goal in this section is to extend the ideas from Chapter 8 by adding inequalities. This time,

unlike the previous sections, we can use inequalities for approximation of square roots. Since we

don’t have a great method for evaluating the value of a square root, we can use approximation

techniques with inequalities instead.

Let’s begin with an easier example.

Example 14.12: Find all real x such that 3
√
x ≥ x+ 2.

Solution: We first note that for
√
x to be defined, we must have x ≥ 0, which means that

x+ 2 ≥ 0. These are both true, so we look for any restrictions in the whole inequality.

Squaring both sides, we get 9x ≥ x2 + 4x + 4. Rearranging gives us x2 − 5x + 4 ≤ 0,

which gives us (x− 1)(x− 4) ≤ 0. This is only true when x ∈ [1, 4]. �

We still need to be really careful when we square both sides, possibly even more careful.

Be sure that you don’t flip the equation and not change the direction of the inequality. Also, as

seen in the previous example, we ensured that both sides weren’t negative before squaring. What

might happen if you don’t? Let’s find out.

Example 14.13: Find all x such that
√
x+ 2 ≤ −x.
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Solution: We quickly notice that x ≥ −2 in order for the left side to be defined. The right side

seems tricky, and we can’t quite square both sides without noting an exception. We can easily see

by plugging in numbers that all positive x are valid here, but there may be some negative value

of x where this isn’t valid. This means that we only consider the interval from [−2, 0] when we

square both sides.

When we do this, we get x+ x ≥ x2. Rearranging gives us x2 − x− 2 ≤ 0, meaning that

(x−2)(x+1) ≤ 0. This means that the interval [−1, 2] is valid. Combining this with the [0,∞)

interval, we get the final interval of [−1,∞). �

Be sure you understand what we did here. At first, it does not make much sense, because it

contradicts checking tomake sure both sides are non-negative. Squaring both sides is a dangerous

maneuver, so this is a perfect example of why we need to be conscious of possible mistakes we

might make.

Let’s move on to attempt a problem with a cube root. Surprisingly, it’s actually easier!

Example 14.14: Find all x such that 3
√

2x2 + 3x− 26 < x− 2.

Solution: This time, we will cube to get rid of cube roots. What happened to checking both

sides to make sure that they’re positive? We don’t have to do that this time! The domain and

range of cube root functions are R, so there are no restrictions to worry about.

Cubing both sides gives us 2x2 + 3x− 26 = (x− 2)3. Expand (x− 2)3 using a method of

your choice to get

2x2 + 3x− 26 = x3 − 6x2 + 12x− 8.

We move all the terms to one side and get x3 − 8x2 + 9x + 18 = 0 and factor. This gives us

(x+ 1)(x− 3)(x− 6) = 0, meaning that x = −1, 3, 6. Now, we can check the chunks.

Drawing the number line gives us:

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

We can check the chunks using the polynomial rather than the radical since they are indeed

the same function. We use the multiplicity extension to solve this; if you aren’t comfortable with

this method, use the method you are most comfortable using.

Applying this method fills in the number line as follows:

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

Writing this in interval notation, we get (−1, 3) ∪ (6,∞). �

We still don’t have a great method for approximating square root functions unless the

argument is a perfect square. Let’s see if inequalities can help.

Example 14.15: Find the smallest x such that
√
x−
√
x− 1 < 0.01.

Solution: Now that we have two radical functions, we have even less of an idea of how to

approximate it − even for a perfect square. However, we may be able to estimate
√
x+
√
x− 1
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a bit easier if x is a perfect square. We multiply by this value on both sides to get

1 <
1

100
(
√
x+
√
x− 1) =⇒ 100 <

√
x+
√
x− 1.

We can find a value for this pretty quickly. Since
√
x ≈

√
x− 1 for a large x, we can look for

values of x such that both terms are approximately 50. Let x = 502. This means that
√
x = 50

and
√
x− 1 < 50, so

√
x +
√
x− 1 < 100. Letting x = 502 + 1, we get

√
x > 50 and

√
x− 1 = 50, meaning

√
x+
√
x− 1 > 100.

Therefore, the smallest value of x that satisfies the inequality is x = 502 + 1 = 2501. �

This section was pretty short when compared to the other sections; however, radical in-

equalities aren’t much different than radical equations.

Next, we cover the final type of function and how to deal with their inequalities: exponential

and logarithmic functions.

14.4 Exponential and Logarithmic Inequalities

Exponential and Logarithmic Inequalities are the final types of inequalities discussed in this

chapter. They combine elements seen in the previous sections (primarily radical inequalities),

meaning there isn’t much new information to be covered.

This section will be among the shortest in the chapter, but it is important that we cover this

information.

Example 14.16: Find all values of x that satisfy log10(x− 12) ≤ 2.

Solution: First, we need to note any domain restrictions on the inequality. We know that

log(x − 12) is only defined for x > 12. Raising both sides to the power of 10, we get

x− 12 ≤ 102, meaning that x ≤ 112.

However, because of the domain restriction, we must combine the intervals to get (12, 112].

�

Now that we understand how to account for domain restrictions, let’s ramp up the difficulty

to match other sections.

Example 14.17: Find the regions of all values of x that satisfy log2

(
(x− 2)(x− 4)

(x− 3)(x− 5)2

)
≥ 0.

(A root-finder may be used for this problem.)

Solution: We again need to note domain restrictions here. We see that
(x− 2)(x− 4)

(x− 3)(x− 5)2
> 0,

which is solvable using methods in the rational functions section. We see the roots for the

function are x = 2, 4 and the discontinuities are x = 3, 5. Plotting the number line, we get

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

Using the multiplicity rule, we can fill in the number line as follows:

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
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This shows us that the interval of validity here is (2, 3) ∪ (4, 5) ∪ (5,∞). Now, we need to

find the interval for the entire problem.

Raising both sides to the power of 2, we get
(x− 2)(x− 4)

(x− 3)(x− 5)2
≥ 1 =⇒ (x− 2)(x− 4) > (x− 3)(x− 5)2.

Expanding the polynomials and rearranging gives us

x2 − 6x+ 8 ≥ x3 − 13x2 + 55x− 75 =⇒ x3 − 14x2 + 61x− 83 = 0.

Here, we use the root-finder to find the roots as approximately x = 2.801, 4.287, 6.912. We

draw a number line for this data and get

0 1 2 3 4 5 6 7 8 9 10

Using the multiplicity rule again, we can fill in the intervals as follows:

0 1 2 3 4 5 6 7 8 9 10

We now need to combine the intervals such that both are satisfied. Doing this, we get the final

interval of [2.801] ∪ [4.287, 5) ∪ (5,∞). �

These are about as hard as these problems are going to get. All the practice problems, in-

cluding the challenge problems, should not be difficult using the methods provided. If something

seems difficult, try a different method!

K Chapter 14 Review Problemsk

1. Find all x that satisfy the inequalities below.

(a) 6x2 + 5x < 4. (b) x2 + 50x− 2079 ≥ 0. (c) −x2 + 7x− 13 > 0.

2. Find all x such that
√
x < 2x.

3. Let f(x) =
7x2 − 4x+ 4

x2 + 1
. Find the range of f(x) given the domain of f(x) to be all real

numbers.

4. Find the region of values of x that satisfy the inequalities below.

(a)
x2 + x− 6

2x3 − 9x2 + x+ 12
< 0. (b)

x2 + x− 2

4x2 + 11x− 3
÷ x2 + 2x− 3

2x2 − 9x− 5
≥ 0.

5. Solve the inequality
√

5x− 1 +
√
x− 1 ≤ 2.

6. Find the region of all x that satisfies log

(
x2 − 4

x− 4

)
≥ 3.

7. Solve the following inequalities:

(a) log5(3− x) ≥ 7 (b) log(1/2)(2x) > 3.

8. Find all x such that 3
√

5x2 + 24x+ 8− 2 < x.
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9. To the nearest thousandth, log10(2) = 0.301 and log10(3) = 0.477. Which of the follow-

ing is the best approximation of log5(10)?

8

7
,

9

7
,

10

7
,

11

7
,

12

7
.

10. Let x > 0 and y ≤ c where c is a constant. Prove that x+ y

1 +
xy

c2

≤ c.

11. Below is the number line indicating a solution for some polynomial function f(x). Using

this, determine the original function.

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

12. Without using a calculator, determine which is greater:
445721

9902923
or

445725

9902927
.

K Chapter 14 Challenge Problemsk

1. Find all values of x such that
√
x2 + 7x+ 10 > x+ 2 +

√
x+ 2.

2. Let a ≥ b > 1. What is the largest possible value of loga

(a
b

)
+ logb

(
b

a

)
?

3. If log2(a) + log2(b) ≥ 6, then find the smallest possible value of a+ b.

4. If x, y > 0, logy(x) + logx(y) =
10

3
, and xy = 144, find the value of

x+ y

2
.

5. Prove that
x2 + 2√
x2 + 1

≥ 2.

6. Below is the number line indicating a solution for some rational function f(x). Given that

no discontinuities are removable, determine the original function.

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

7. Using the function found from the previous problem, determine a two-dimensional graph

that graphs the function and the solution intervals.

8. Show that
1

10
<
√

101−
√

99 without using a calculator.

9. Find all x such that
(
x2 − x− 1

)(x2+x−20) < 1.

10. Find the largest integer n such that n <
(√

33 +
√

128 +
√

2− 8
)−1

.
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This chapter will begin to look into how Algebra 2 can manifest itself in real life situations.

And the easiest way to see that is through the study of physics! Now what is physics you may

ask? Well since this isn’t physics class, I’ll give you a mathematical definition. Physics attempts

to condense our world into a model upon which we can predict things with mathematics. For

example, when you say “whatever comes up, must come down”, that involves math. Now we’re

not going to delve too much into this but we’ll graze some things that would be nice to know. So

without further ado, let’s jump into the world of actual applications (now you can’t say Algebra

2 has no point).

15.1 Vectors

We begin our discussion of physics by discussing vectors.

Now you may be asking what is a vector? Now depending on how many math classes you

have taken, or how many you will take, there are varying levels of complexity to this definition.

Since you are an incoming freshman, let’s give you a simple one that will work for our purposes:

A vector represents number or quantity in a specific direction.

x

f(x)

vec
tor

6

4

A

B

Usually when we discuss vectors, we bring in the dis-

cussion of scalars. Scalars are just numbers. For example,

the number 12, is a scalar. −12 is a scalar. Any number that

just persists and doesn’t have any direction to account for is a

scalar. So an easier way to define vector is just a scalar with

a direction.

So what does a vector look like? A vector is essentially

a point with an arrow being drawn from a second point to it.

An image is shown to the right.

With the notion of the vector, we get into the concept of

the tail and the head. Usually vectors are drawn from tail to head, so you start at some point, and

draw to the end point. Now what would this look like mathematically?

A vector can be represented three different ways:

~v = aî+ bĵ ~v =< a, b > ~v =

(
a

b

)
.
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For simplicity, we will stick to the first two (primarily the second) to avoid confusion.

Now you may have noticed the î (pronounced i-hat) and ĵ (pronounced j-hat) next to the

variables a and b respectively. What do those mean? Well those represent unit vectors. Unit

vectors are basically a fancy word for saying a vector has a length of 1 and has some direction.

Now these are next to the variables a and b because they tell us how far to go in each direction. î

represents the +x-direction, so we go a units in the +x direction. ĵ represents the +y-direction,

so we go b units in the +y direction. And as a result, we obtain the vector, < a, b >.

When we discuss the difference between scalars and vectors, this question will be answered:

what are some physical concepts that might be vectors or scalars? Well since we’re in physics

let’s start with two easy concepts − distance versus displacement. Below, we list the definitions

of each:

Distance measures the total steps traveled from the starting point to the end point.

Displacement measures your position relative to the starting point.
To emphasize the difference between the two, let’s suppose we had a 1−D system (a line). Let’s

say Quinn wants to walk across the line for his daily dose of exercise. Suppose he walks 5 metres

in the +x direction and 10 metres in the −x direction. What is the distance Quinn traveled?

Also what is Quinn’s displacement?

To calculate the distance Quinn traveled, we say he went 5 metres, so he’s at 5, then he

traveled an additional 10 metres, so his total distance traveled is 15 metres. To calculate Quinn’s

displacement, we say he went 5 metres in the positive x-direction, then he traveled back 10

metres in the negative x-direction. So, his displacement is 5− 10 = −5 meter.

Notice the difference between he two? Distance doesn’t care for direction; it just cares that

you traveled. Displacement however cares about how you travel. So going back and forth can

affect the sign of our displacement. This means that displacement is a vector and distance is a

scalar.

15.1.1 Vector and Scalar Properties

This section is going to be very definition-heavy.

Vectors exhibit interesting behavior when we do operations with them. Let’s begin with

adding vectors.

Consider vectors ~v1 =< a, b > and ~v2 =< c, d >. Similar to complex numbers, you should

assume that we add each component. This means that ~v1 + ~v2 =< a+ c, b+ d >. It’s important

to also understand how this is graphed since vectors are a very visual subject. Below are images

of how they are graphed.

~v2

~v1 ~v2

~v1

~v1 + ~v2 ~v1 + ~v2

~v1

~v1

~v2

~v2
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Now, let’s understand the concept of a scalar multiple. A scalar multiple is a non-zero scalar

being multiplied by a vector. For example, using ~v1 above, multiplying the vector by a scalar

would mean multiplying ~v1 by a non-zero real constant k (where k could equal 2,
1

5
,
√

3,−1,

etc.). Mathematically, given ~v1 =< a, b >, we define the scalar multiply by a factor of k as

k ~v1 =< ka, kb >. Below is a depiction if k = 3:

~v1

~v1

~v1

→

3~v1

Here is a picture of what would happen if k < 0. It would flip the direction of the vector.

~v1

→

−~v1

Now, let’s learn to subtract the vectors. Essentially, we need to do the "head-to-tail" method

in reverse. Mathematically, given ~v1 =< a, b > and ~v2 =< c, d >, we get

~v1 − ~v2 = ~v1 + (−~v2) =< a, b > + < −c,−d >=< a− c, b− d > .

Below is the graphical representation.

~v2

~v1
~v2

~v1

~v1 − ~v2

Now you may be wondering, what if I want to multiply two vectors? Do I just multiply the

components of ~v1 and ~v2? Well, the thing is you can, but not in the way you are thinking. In

vector multiplication, there exist two types of answers: Dot products and Cross products. You

can learn more about these on your own, but I am letting you know they exist.

Finally, there is no such thing as vector division. What a letdown.

The next thing we wish to do with vectors is decompose them into their components.

Sometimes, we’re not always given vectors in the nice form < a, b >. Sometimes, we have to

extract them out of word problems.

Let’s do this one by example.

Example 15.1: Simon kicked a soccer ball at a 15-degree angle above the horizontal, and the

ball is now going at 20 miles per hour, find the horizontal and vertical components of the ball’s

velocity.

Solution: We first draw the diagram indicating the ball’s velocity. This is shown at the top of

the next page.
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v = 20mph

x

y
30◦

Using trigonometry from Chapter 12, we can find the values of the components:

cos(30◦) =
x

20
=⇒ x = 20 cos(30◦)

sin(30◦) =
y

20
=⇒ y = 20 sin(30◦)

Writing this in vector form, we obtain < 20 cos(30◦), 20 sin(30◦) >. �

Now that we know how to decompose a vector into components, what if we need to combine

the components? We have a special term for this, called themagnitude. Themagnitude is denoted

as ||~v|| and represents the length of a vector (essentially the hypotenuse). This means that we can

use the Pythagorean Theorem to find the hypotenuse. This gives us a new formula for vectors:

||~v|| =
√
x2 + y2.

And we can use this magnitude to actually calculate unit vectors for given vectors. For example,

by dividing the magnitude of the vector by the vector itself, we obtain the unit vector. This means

that the unit vector is
~v

||~v||
=<

x√
x2 + y2

,
y√

x2 + y2
>. To ensure that it’s a unit vector, we

can take the magnitude and it should be 1 (it is!).

15.2 Modeling Real-World Scenarios

This section will explore real-world applications of methods learned in Algebra II and in the

previous sections. Here are some definitions you need to know before we get started:

Displacement: Change of position of an object relative to the origin.

Velocity: Change in position over time.

Acceleration: Change in velocity over time.

We are going to relate these values in a series of equations called kinematic equations to model

traveling objects. Here are the five variables we need:

vi = initial velocity vf = final velocity t = time

a = acceleration ∆x = displacement
Here are the five equations we need to use:

vf = vi + at ∆x =

(
vi + vf

2

)
t ∆x = vit+

1

2
at2

∆x = vf t−
1

2
at2 v2f = v2i + 2a∆x

Notice that all these equations have one of the five variables missing. This means that we only

three pieces of information to find all five (be sure to see why!). With these equations, we can
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basically model any equation provided the acceleration is constant.

Here is a general problem-solving strategy to solve kinematic equations:

1. Determine an origin for the problem,

2. Write down known quantities,

3. Choose the appropriate equation,

4. Plug in known values,

5. Solve for the desired variable.

So where are the vectors in this process? The vectors come in all the variables. Velocity,

displacement, and acceleration are all vectors; however, for these equations we are consolidating

to one direction of motion. This means we are only dealing with their components rather than

the entire vector.

Let’s work out some examples.

Example 15.2: Josh startes from rest and accelerates down a football field at 3.20m
s2 for 32.8

seconds until his foot gives out and he trips. How fast was he going when he tripped? (Assume

Josh runs with constant acceleration.)

Solution: Let’s first draw a picture of the area and an origin for the problem. Typically denote

the object in motion as a ball or a block; this case, we use a ball.

a = 3.2m
s2

∆x

For this problem, let’s say that Josh is running away from the origin. We now write down

the known quantities:

a = 3.2 t = 32.8 vi = 0 (rest) vf = ? ∆x = ?.

We see here that we don’t have displacement nor final velocity. To solve for final velocity using

the variables we have, we choose the vf = vi + at equation since it has the known variables,

doesn’t include the variable we don’t have, and includes the variable we want. Substituting

values, we get

vf = 0 + (32.8)(3.2) =⇒ vf = 104.96
m
s2
.

�

So where are the vectors? Remember that this all occurs in the î direction, so we don’t need

the vectors here since it’s all in one direction. To see the equation we used in vector form, we

change the vectors to indicate their directions:

~vf = ~vi + ~at =⇒ vf (̂i) = vi(̂i) + a(̂i)t.

Why doesn’t time get a vector component? Time has no direction, meaning it’s a scalar not a

vector. Time isn’t dependent on the origin (or any location) − it passes regardless of where the

origin is.
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Remark: Note that the way that î is written here is slightly different than how most teachers

will write it. Most teachers, and some other texts, will not write the "dot" above the i and will

replace it with the hat. That is the preferred method of writing it, but certain limitations within

the processing software didn’t let us do it.
�

Important: The way in which we denoted acceleration can prove to be very confusing later.

In Physics 1, you will be tasked with creating a free-body diagram, which indicates the forces

exerted on an object. Acceleration and are NOT forces, so refrain from using arrows to indicate

these on a free-body diagram.

Let’s do another one. It won’t be much harder than the first.

Example 15.3: Cole is an expert car driver. One day, Cole gets into his 2013 Ford Fusion

and accelerates at a uniform rate from rest over a time of 5.21 seconds for a distance of 110

metres. He then swiftly merges onto the highway and continues on with his drive. Determine

the acceleration of Cole’s 2013 Ford Fusion.

Solution: Since the diagram for this problem is essentially the same as the previous example,

we won’t draw a new graph. Here’s the quantities we know:

vi = 0 t = 5.21 ∆x = 110 vf = ? a = ?.

We pick the equation ∆x = vit+
1

2
at2 because it doesn’t include vf , the one variable we don’t

care for. Plugging in numbers and solving for a gives us

110 = 0 +
1

2
(a)(5.21)2 =⇒ a = 8.105

m
s2
.

�

Again, you could do the vector form for that problem, but it’s unnecessary.

We spent the last two problems discussing objects traveling horizontally, but what if an

object was travelling vertically (falling)? We could do that too!

Example 15.4: Quinn decides to skydive for his 19th birthday. He drops from an altitude of

5000 metres. Find Quinn’s final velocity as he parachutes safely and find how long he falls for.

Solution: First, we will find the final velocity. The setup is the same for both parts.

We first note that to drop an object implies that it starts with an initial velocity of zero. Also,

a falling object has the acceleration of the speed of gravity, which is 9.8m
s2 downward.

Finding the origin is really important since it provides us with the direction of motion. This

ensures that our signs are correct. Typically, we allow the upward direction to be positive, similar

to a coordinate plane. We can summarize the values we know below:

a = −9.8 vi = 0 ∆y = 0− 5000 = −5000 vf = ? t = ?.

To find final velocity, we use the equation v2f = v2i + 2a∆x. Plugging the values and solving for

vf , we get

v2f = 0 + 2(−9.8)(−5000) = 98000 =⇒ vf = −313.05
m
s
.

Notice how we used a negative value for vf ; the velocity vector is also downward (in the direction
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of motion), which is the negative direction.

Now, we need to find time. To minimize error, we are going to use the values we were given

rather than the one we found; in case we found vf incorrectly, that means that we won’t find t

correctly. So, we use the equation ∆x = vit+
1

2
at2 to find t. Substituting values, we get

5000 = 0 +
1

2
(−9.8)(t2) =⇒ t = 31.94s.

�

So what if the problem was in two directions? Could we use the same logic? We can, but

now we have to implement the vectors. This will help us ensure that we only cover one direction

at a time and do not confuse them. Since this is beyond the scope of the book, we won’t work

out an example. You can find one in the challenge problems if you wish to try one.

Now, let’s discuss how to interpret graphs in physics. It’s very similar, but there’s some key

things to watch out for.

15.3 Properties of Graphs

This section will cover graphs of functions in physics and how to interpret them. Most of these

graphs will be based on the problems solved along the way, meaning that the graphs will mostly

fall into one of three types: displacement vs. time, velocity vs. time, or acceleration vs. time.

We will start with displacement.

Note that these subsections will be summaries of the key details to note rather than com-

pletely describing it. More information will be described in the Physics 1 curriculum. Displace-
ment Versus Time. Displacement versus time gives us a plot of the position of the object in two

dimensions. If the object moves further away, the |y| will increase. If the object moves closer to

the origin (starting point), |y| will decrease.
Remark: Note how we use |y| instead of y. This is because the object could travel in the

negative direction, which is possible in motion. Think about it this way: start at the centre of a

football field. Moving toward the opposing goal is the positive direction, moving toward your

goal is the negative direction.

The slope of this graph represents velocity. We know this since velocity, by definition, is

the change in displacement over time. If the graph is horizontal, this means that the object is not

moving (v = 0).

If the graph is concave up, there exists a positive acceleration. When the graph is concave

down, there is a negative acceleration. What is concavity? Concavity is the slope of the slope,

which we can tell by the direction of the curve. If the curve makes a bowl shape (or a smiley

face), we denote this as concave up. If the curve makes an inverted bowl shape (or a frowny

face), we denote this as concave down. Below is a picture of both concavities:

To find the graph of distance versus time, we can take the absolute value of the graph.

Velocity Versus Time. Velocity versus time will graph the motion of the object over time. The
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Concave down
Concave up

slope of this graph gives us acceleration. When the graph is horizontal, there is no acceleration.

This means the object is moving at constant velocity. When we take the absolute value of the

graph, we obtain the speed versus time graph.

Remark: Note how are making a stark difference between speed and velocity. They are not the

same! Velocity is a vector while speed is a scalar.

Acceleration Versus Time. This graph models the acceleration versus time of an object.

In most cases, this graph will be flat or piece-wise flat, meaning there is constant acceleration.

In later years of Physics, this graph can change to be any polynomial function over time. If we

find the area under the graph, we find the change in velocity over the interval of time.

Since there wasn’t much math going on here, we are only going to do one example. This

will be the peak difficulty for this topic.

Example 15.5: Take the function a(t) =

2t t < 4

1 t ≥ 4
, where a(t) represents the acceleration

function of an object traveling through space. Assume the particle starts at rest and is positioned

at the origin. Find the corresponding velocity function.

Solution: For the time t < 4, we have an increasing acceleration. This means that over time, the

velocity graph is steepening. What graph do we know that does that? A parabola! This means

that until t = 4, we have a parabola. We will match the exact parabola once we discuss the other

half.

When t ≥ 4, we have constant acceleration. This means that the velocity is steadily

increasing over time, just like a line! This must mean that the velocity is linear. Now, let’s match

the two graphs.

At t = 0, the graph is at rest and starts at the origin. This means that the vertex of our

parabola must be at (0, 0). So, our graph must be y = t2. For the second half, we know that the

constant acceleration of y = 1 must correlate to exactly y = t.

This means that the velocity function, v(t) =

t
2 t < 4

t t ≥ 4
. �

With this, we conclude our discussion of kinematics and physics. For the next section,

we need to learn how to use a graphing calculator − an essential tool in both Pre-calculus and

physics.
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15.4 Using a Graphing Calculator

If you haven’t bought a graphing calculator yet, you will need one for your time at Suncoast. We,

the authors of this book, recommend a TI-84 Plus Color calculator for high school; for college,

we recommend switching to a TI-Nspire CX calculator. We believe that the TI-Nspire isn’t as

user-friendly and is too powerful for your needs. All explanations here will follow a TI-84 Plus

Color Calculator.

It is highly unlikely that in the real world, we won’t be doing every calculation by hand.

There is too much room for error when a computer can do it faster and with ensured accuracy.

What can we do with this calculator? We can do a number of things, but we will go through

some of the essential topics for physics and pre-calculus.

15.4.1 Linear Regression

Linear Regression is the process of fitting a line to a given set of data and determining how well

that line fits the data. This is an essential tool for the physics laboratory, because it helps us find

fundamental constants given certain equations.

Using a TI-84 Plus Color calculator, follow the steps below to find a linear regression model.

1. Press the MODE button. Scroll down until you find Stat Diagnostics and Stat Wizards.

Turn both of these on. This should be a one-time issue; however, every time your calculator

runs out of battery/charge, or is reset, you will need to do this again.

2. Press the STAT button, then press 1:Edit. This should bring up a list of tables titled L1,

L2, L3, and so on. These are the lists your calculator can store.

3. In list L1, type in all independent variables. Go to the first empty column of the table, type

in a value, then press ENTER. This will move the cursor to the next row, when you can type

in a new value.

4. Then, press the Right arrow key to move to the next list (L2). Type in all the dependent

variables that correspond with each independent variable.

5. Press 2ND, then MODE. This is the Quit button, and will return you to the home screen.

6. Press the STAT button again. Press the Right arrow to move to the CALC window. Click on

8:LinReg(a+bx).

7. On this window, there are a few options. XList represents the independent variable list

(which is correctly L1 by default), YList represents the dependent variable list (L2 by

default), FreqList which is unimportant to us, Store ReqEq which is important, then

finally the Calculate button.

8. Move your cursor to Store RegEq. Press the ALPHA buttom, then press TRACE. This will

bring up a drop-down menu containing equation names (Y1, Y2, Y3, and so on). Press

1:Y1. Now, press Calculate.

9. The next window will tell you all the important statistics. a= will be the y-intercept and
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b= will be the slope. A constant called r will also be there; this represents how well the

line fit the data. The closer it is to −1 or 1, the more linear the data was. If it’s close to 0,

the data is not linear.

10. To see a visual of the data, press 2ND then Y=. Press Plot 1, ensure that the XList and

YList are correct, then press the Scatterplot graph. Then, press ZOOM, then 9:ZoomStat.

This will bring up a graph of the scatter-plot and the regression line.

11. Press 2ND, then MODE to return to the home screen.

Remark: To delete a list, you can go to the lists menu, scrolling up to a list, then pressing

CLEAR, then ENTER. DO NOT press DELETE. This will delete the list. To delete an entry, press

DELETE on the entry.

Now that we’ve explained this, we can look at some problems.

Example 15.6: Below is a set of data representing the resistance provided a resistor in a circuit

depending n the length (l) and cross-sectional area (A). Determine the value of the constant ρ

using the equation R = ρ
l

A
.

Cylinder A (m2) l (m) ∆V (V ) R (Ω)

1 0.00049 0.030 1.02 23.6
2 0.00049 0.050 2.34 31.5
3 0.00053 0.080 3.58 61.2
4 0.00057 0.150 6.21 105

Solution: The equation given doesn’t represent a line very well. There’s a fraction! Well, what

we can do is create a new line of data (via a substitution) that will make this linear. If we set
l

A
to be the independent variable, we can find ρ by finding the slope of the resulting line. Let’s

extend the table to find this value.

Cylinder A (m2) l (m) ∆V (V ) R (Ω) l
A (m−1)

1 0.00049 0.030 1.02 23.6 0.030/0.00049
2 0.00049 0.050 2.34 31.5 0.050/0.00049
3 0.00053 0.080 3.58 61.2 0.080/0.00053
4 0.00057 0.150 6.21 105 0.150/0.00057

Remark: The reason we didn’t do the calculations is because the calculator can do them within

the table, so it saves us time to leave it like this.

Using the data for
l

A
as the independent variable, alongwith the values ofR as the dependent

variable. Performing the steps shown above, we can find the equation of the line of be

y(x) = −5.204 + 0.419(x).

So many people might be asking how there’s a y-intercept if the equation was supposed to be in

the form y = kx. In real-life, there’s always outside factors that offset the values, which impact

the accuracy of the data. We can’t have negative resistivity (ρ), so this is a part of the domain we

ignore.
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What we can analyze is that the resistivity is about 0.419. �

Let’s keep the ball rolling and do another example.

Example 15.7: Consider the data below relating the voltage of a battery to the current yielded

and the resistance within the circuit. Using the equation ∆V = IR, determine the value of the

resistance.

∆V (V ) 6.0 5.0 3.5 2.5 2.0 1.5
I (A) 0.078 0.070 0.044 0.036 0.027 0.018

Solution: Fortunately, for this example, we don’t need to do any manipulation since the function

is already linear. When we do linear regression, we know that the independent variable will be

current (I) and the dependent variable will be voltage (∆V ).

When we follow the process above, we get the following equation:

y(x) = 3.008 + 12.086(x).

This means that the resistance of the circuit is 12.086Ω. �

One last example; trust me, this one will be much harder.

Example 15.8: The table below gives values of θi and θr, angles of reflection of light between

two mediums. Using the table and the equation sin(θi) = nr sin(θr), determine the constant nr.

Trial 1 2 3 4 5

θi 30◦ 40◦ 50◦ 60◦ 70◦

θr 20◦ 27◦ 32◦ 37◦ 40◦

Solution: This equation is almost linear, but we need to make some small adjustments. We

know that we need to find nr, which will be the slope of the graph. This means that sin(θr) will

be the independent variable and sin(θi) will be the dependent variable. So, we need to extend

the table to input these values.

Trial 1 2 3 4 5

θi 30◦ 40◦ 50◦ 60◦ 70◦

θr 20◦ 27◦ 32◦ 37◦ 40◦

sin(θi) sin(30◦) sin(40◦) sin(50◦) sin(60◦) sin(70◦)
sin(θr) sin(20◦) sin(27◦) sin(32◦) sin(37◦) sin(40◦)

Following the steps for linear regression, we find that the function we need is

y(x) = −0.008 + 1.460(x).

This means that the value of the constant is about 1.460. �

This is all we need to cover for this topic. Now, for the next thing that the graphing calculator

can do: calculate roots of a polynomial and solve systems of linear equations.
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15.4.2 Polynomial Root Finder & Simultaneous Equation Solver

By default on a TI-84 Plus Color, there is an app called PolySmlt 2 that can do both functions

named in the subsection title. This is extremely useful for speeding up problems that involve

these steps (trust me, they’re everywhere in physics).

Remark: Note that these apps will disappear if you clear your Archive memory from your

calculator. DO NOT do that! It’s a hassle to reinstall.

So how do we use these? Here are the steps for the Polynomial Root finder:

1. Press the APPS button. This should bring a menu with a list of default apps on your

calculator.

2. Locate the PolySmlt 2 app. It could be anywhere on the list, usually it’s somewhere

around Number 8.

3. Opening the app opens a start menu, which you can press ENTER to get through, and then

a menu listing the two options. Press 1:Polynomial Root Finder.

4. In this next menu, you can list the properties of the polynomial. The main property on this

menu is the degree (order) of the polynomial. Be sure to put the right degree. Also, scroll

down and press a+bi in the second row. We want the root finder to list any complex roots

that it may find.

5. Press GRAPH to move to the next window. This window allows you to type in the coefficients

of the polynomial from highest to lowest degree. Be sure to include any 0’s if any.

6. Press GRAPH to find the roots. The resulting window has the roots of the polynomial.

7. When you are finished, press Y= to return to the main menu.

Here are the steps for the Simultaneous Equation solver:

1. On the main menu of the app, press 2:SimultEqn to open this function.

2. In this window, press the number of equations you have and the number of unknowns you

need to find. For this to work, the number of equations must be at least the number of

unknowns. You’ll learn more about what happens if not when you take Linear Algebra.

3. Press GRAPH to move to the next window. This window brings up a large matrix with all

entries as 0. We fill this in using the coefficients of the system, where the column after the

darker line is the constant at the end. (For example, if the system was

x+ y = 2

x− 2y = 7
,

the first row would be 1 | 1 | 2 and the second row would be 1 | −2 | 7).

4. Press GRAPH to solve the system. The resulting window has the solution to the system.

5. When you are finished, press Y= to return to the main menu.

You can play around with these all you want; you can use these to check your answers from

problems throughout the book if you want.

With this, we conclude our discussion of calculator tricks and our study of physics. If you

want to learn more about how to use it, its more advanced functionality (such as programming),
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the Internet has loads of resources. Also, you can feel free to reach out to Mr. Ellis using the

email in the introduction about programming.

K Chapter 15 Review Problemsk

1. An engineer is designing the runway for an airport. Of the planes that will use the airport,

the lowest acceleration rate is likely to be 3m
s2 . The takeoff speed for this plane will be

65m
s . Assuming this minimum acceleration, what is the minimum allowed length for the

runway?

2. A bullet leaves a rifle with a muzzle velocity of 521m
s . While accelerating through the

barrel of the rifle, the bullet moves a distance of 0.840m. Determine the acceleration of

the bullet (assume a uniform acceleration).

3. Below is an experiment to determine the value of a constantnR given Pressure (P ), Volume

(V ), and Temperature (T ) of an ideal gas. Using the table and the equation PV = nRT ,

determine the value of this constant.

Trial 1 2 3 4 5 6 7

V (cm3) 4.0 3.0 5.0 4.0 10.0 5.0 3.0
P (kPa) 250 330 220 270 110 230 380
T (◦C) 0 0 20 20 20 40 40

K Chapter 15 Challenge Problemsk

1. Suppose Matthew kicks a ball at 45◦ with respect to the horizontal with a speed of 30

metres per second. Find how long it takes the ball to fall down, and how far the ball goes.

2. Suppose we have two trains and a bee. One train starts at a distance d away from the other

train. Both trains travel at constant speed v, but in opposite directions towards each other.

Suppose there is a bee that travels at a constant speed c where c > v. So this bee starts

off at one train and flies to the other train. Upon reaching the other train, the bee switches

direction and maintains the same velocity c until it reaches the original train, and switches

direction once more. This cycle repeats until the trains crash. What is the total distance

the bee travels by the time the trains crash?

3. Below is a table of data found in an experiment that shoots a ball of massm to a height h

using a spring that compresses kmetres. Using the table below, and the equation h =
kx2

mg
,

determine the value of the spring constant k. (Note that the ball has a uniform compression

distance of x = 0.020 and gravity is also constant.)

m (kg) 0.020 0.030 0.040 0.050 0.060
h (m) 0.49 0.34 0.28 0.19 0.18



Appendix Table of Parent Functions

This section includes all the parent functions you should know before entering Suncoast. They

are used frequently throughout this text; as a result, be sure to learn them as quick as possible.

x

f(x)

f(x) = x

x

f(x)

f(x) = x2

x

f(x)

f(x) = x3

x

f(x)

f(x) =
√
x

x

f(x)

f(x) = 1
x

x

f(x)

f(x) = |x|

x

f(x)

f(x) = 3
√
x

x

f(x)

f(x) = ex

x

f(x)

f(x) = log(x)
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x

f(x)

f(x) = sin(x)

x

f(x)

f(x) = cos(x)

x

f(x)

f(x) = tan(x)

x

f(x)

f(x) = csc(x)

x

f(x)

f(x) = sec(x)

x

f(x)

f(x) = cot(x)

x

f(x)

f(x) = bxc

x

f(x)

f(x) = dxe

x

f(x)

f(x) = {x}



Appendix Links to Extra Practice Problems

This section includes associated worksheets for various topics in the book. The worksheets are

provided through Kuta Software, an online site dedicated to providing practice problems for

students in high-school mathematics.

Each of the worksheets has all the answers at the end of the document. Please use these as

a source to check your work to ensure mastery of the material.

Note that Kuta Software does not have all the content contained within this text, and this

text does not encompass every Kuta Software worksheet. The final three links are the links to

their Algebra I, Algebra II, and Pre-Calculus databases fromwhich you can find more worksheets

concerning various topics.

Chapter 2 − Function Basics
2.1 – Basic Set Theory

2.2 – Function Basics

2.3 – Inverse Functions

2.4 – Transformations, End Behavior, and Graphing

2.5 – Piece-wise Functions and Function Combinations

Chapter 3 − Complex Numbers
3.1 – Arithmetic of Complex Numbers

3.2 – The Argand Plane

Chapter 4 − Linear Functions and Relations
4.1 – Linear Functions (Graphing)

4.1 – Linear Functions (Writing Linear Equations)

4.3 Piece-wise Functions

Chapter 5 − Quadratic Functions
5.1 – Quadratics in Vertex Form

5.2 – Quadratics in Factored Form

5.4 – Special Quadratics

5.7 – Completing the Square

5.8 – The Quadratic Formula

Chapter 6 − Higher-Order Polynomials
6.1 Basic Theory of Higher-Order Polynomials (Naming)

6.2 Theories in Solving Higher-Order Polynomials, Part I (Descartes’ Rule)

6.3 Theories in Solving Higher-Order Polynomials, Part II (Rational Root Theorem)

6.3 Theories in Solving Higher-Order Polynomials, Part II (Remainder Theorem)

6.4 The Special Cases (Grouping)
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6.4 The Special Cases

6.5 Graphing Polynomial Functions

Chapter 7 − Rational Functions
7.1 Rational Expressions & Manipulation (Addition)

7.1 Rational Expressions & Manipulation (Multiplication)

7.2 Complex Fractions

7.3 Polynomial Division

7.4 Rational Equations

Chapter 8 − Radicals and Rational Exponents
8.1 Radical Expressions and Rational Exponents

8.1 Radical Expressions and Rational Exponents (Simplifying Radicals)

8.2 Solving Radical Equations

8.4 Graphing Radicals

Chapter 9 − Exponential and Logarithmic Functions
9.2 Logarithms and Logarithmic Functions

9.3 Applications of Exponential and Logarithmic Functions (Interest)

9.4 Exponential and Logarithmic Expressions and Equations (Exponential)

9.4 Exponential and Logarithmic Expressions and Equations (Logarithmic)

9.5 Graphing Exponential and Logarithmic Functions (Exponential)

9.5 Graphing Exponential and Logarithmic Functions (Logarithmic)

Chapter 11 − Systems of Equations
11.1 Solutions to Systems via Graphing

11.2 Solutions to Linear Systems via Substitution

11.3 Solutions to Linear Systems via Elimination

Chapter 12 − Trigonometry
12.2 The Unit Circle

12.3 Solving Trigonometric Equations
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Chapter 13 − Conic Sections
13.1 Parabolas and Applications

13.2 Circles and Applications

13.3 Ellipses and Applications

13.4 Hyperbolas

Chapter 14 − Inequalities
14.1 Polynomial Inequalities

14.2 Rational Inequalities

Chapter 15 − Essentials for Physics
15.1 Vectors
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